MATHS GURUS 2020 EQUATION OF A CIRCLE, GRAPHS OF CUBIC FUNCTIONS & GRAPHICAL DETERMINATION OF LAWS

EQUATIONS OF A CIRCLE

1. Determine the equation of a circle centre $(\frac{1}{2}, -\frac{1}{2})$ and radius r = 3 units. Give your answer in the form $ax^2 + by^2 + cx + dy + e = 0$ where *a*, *b*, *c*, *d* and *e* are integers.

$$\left(x - \frac{1}{2}\right)^{2} + \left(y + \frac{1}{2}\right)^{2} = 9$$

$$x^{2} - x + \frac{1}{4} + y^{2} + y + \frac{1}{4} = 9$$

$$4x^{2} - 4x + 1 + 4y^{2} + 4y + 1 = 36$$

$$4x^{2} + 4y^{2} - 4x + 4y - 34 = 0 \text{ or}$$

$$2x^{2} + 2y^{2} - 2x + 2y - 17 = 0$$

2. The points with coordinates (7, -10) and (-3, 8) are the end points of a diameter of a circle centre A. Determine the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ where *a*, *b* and *c* are constants.

Centre A
$$\Rightarrow$$
 mid point $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

$$= \left(\frac{7-3}{2}, \frac{-10+8}{2}\right) \Rightarrow A(2, -1)$$
Radius $\Rightarrow \sqrt{(2+3)^2 + (-1-8)^2} = \sqrt{106} = 10.30 \text{ units}$
 $(x-2)^2 + (y+1)^2 = (\sqrt{106})^2$
 $x^2 - 4x + 4 + y^2 + 2y + 1 = 106$
 $x^2 + y^2 - 4x + 2y - 101 = 0$

3. The equation of a circle is given as $4x^2 + 4y^2 - 16x + 24y + 3 = 0$. Find the centre of the circle and its radius.

$$x^{2} + y^{2} - 4x + 6y = -\frac{3}{4}$$

$$x^{2} - 4x + \left(-\frac{4}{2}\right)^{2} + y^{2} + 6y + \left(\frac{6}{2}\right)^{2} = -\frac{3}{4} + \left(-\frac{4}{2}\right)^{2} + \left(\frac{6}{2}\right)^{2}$$

$$(x - 2)^{2} + (y + 3)^{2} = \frac{49}{4}$$
Centre (2, -3) and radius $r = \frac{7}{4} = 3.5$ units

4. The equation of a circle is given as $x^2 + y^2 + 4x - 5 = 0$. Find the centre of the circle and its radius.

$$x^{2} + 4x + \left(\frac{4}{2}\right)^{2} + y^{2} + 0y + \left(\frac{0}{2}\right)^{2} = 5 + \left(\frac{4}{2}\right)^{2} + \left(\frac{0}{2}\right)^{2}$$
$$(x + 2)^{2} + (y + 0)^{2} = 9$$

Centre (-2, 0) and radius = 3 *units*

5. obtain the centre and the radius of the circle represented by equation

$$x^{2} + y^{2} - 10y + 16 = 0.$$

$$x^{2} + 0x + \left(\frac{0}{2}\right)^{2} + y^{2} - 10y + \left(-\frac{10}{2}\right)^{2} = -16 + \left(\frac{0}{2}\right)^{2} + \left(-\frac{10}{2}\right)^{2}$$

$$(x + 0)^{2} + (y - 5)^{2} = 9$$

Centre (0, 5) radius = 3 *units*

6. Show that $3x^2 + 3y^2 + 6x - 12y - 12 = 0$ is an equation of a circle hence state the radius and the centre of the circle. $x^2 + y^2 + 2x - 4y - 4 = 0$

$$x^{2} + 2x + \left(\frac{2}{2}\right)^{2} + y^{2} - 4y + \left(\frac{-4}{2}\right)^{2} = 4 + \left(\frac{2}{2}\right)^{2} + \left(\frac{-4}{2}\right)^{2}$$

 $(x + 1)^2 + (y - 2)^2 = 9 \Leftrightarrow$ It is an equation of a circle

Centre (-1, 2) & radius = 3 *units*

7. Find the centre and the radius of a circle whose equation is given by $4(x^{2} + y^{2}) = 12(x - y) + 7$ $4x^{2} + 4y^{2} - 12x + 12y = 7$ $x^{2} + y^{2} - 3x + 3y = \frac{7}{4}$ $x^{2} - 3x + \left(\frac{-3}{2}\right)^{2} + y^{2} + 3y + \left(\frac{3}{2}\right)^{2} = \frac{7}{4} + \left(\frac{-3}{2}\right)^{2} + \left(\frac{3}{2}\right)^{2}$ $\left(x - \frac{3}{2}\right)^{2} + \left(y + \frac{3}{2}\right)^{2} = \frac{25}{4}$

Centre (1.5, -1.5) and radius = 2.5 *units*

- 8. Find the centre and the radius of a circle whose equation is given by 2x(x-3) + 2y(y+5) + 9 = 0. $2x^{2} - 6x + 2y^{2} + 10y + 9 = 0$ $x^{2} - 3x + y^{2} + 5y = \frac{9}{2}$ $x^{2} - 3x + \left(\frac{-3}{2}\right)^{2} + y^{2} + 5y + \left(\frac{5}{2}\right)^{2} = \frac{9}{2} + \left(\frac{-3}{2}\right)^{2} + \left(\frac{5}{2}\right)^{2}$ $(x - 1.5)^{2} + (y + 2.5)^{2} = 4$ Centre (1.5, -2.5) and radius = 2 *units*
- 9. AB is the diameter of a circle. Given the co ordinates of A and B as (2, -3) and (4, -7) respectively, find the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ where *a*, *b* and *c* are integers.

Centre
$$\left(\frac{4+2}{2}, \frac{-7-3}{2}\right) \Longrightarrow (3, -5)$$

Radius =
$$\sqrt{(3-2)^2 + (-5+3)^2} = \sqrt{5}$$

 $(x-3)^2 + (y+5)^2 = (\sqrt{5})^2$
 $x^2 - 6x + 9 + y^2 + 10y + 25 = 5$
 $x^2 + y^2 - 6x + 10y + 29 = 0$

10. Find the equation of a circle with the end points of a diameter at (4, 3) and (0, 1). Give your answer in the form $x^2 + y^2 + ax + by + c = 0$ where a, b and c are integers.

Centre
$$\left(\frac{4+0}{2}, \frac{3+1}{2}\right) \Rightarrow (2, 2)$$

Radius = $\sqrt{(2-0)^2 + (2-1)^2} = \sqrt{5}$
 $(x-2)^2 + (y-2)^2 = (\sqrt{5})^2$
 $x^2 - 4x + 4 + y^2 - 4y + 4 = 5$
 $x^2 + y^2 - 4x - 4y + 3 = 0$

11. Find the circles that satisfy the conditions: Radius = $\sqrt{17}$, centre on the x – axis, and passes through the point (0,1). Give your answers in the form in the form $x^2 + y^2 + ax + by + c = 0$ where , *ab* and *c* are integers.

12. A circle whose centre is at (1, 3) has the x – axis as its tangent. Determine the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ where *a*, *b* and *c* are integers.

13. Find the equation of the line containing the centres of the two circles $x^2 + y^2 + 6x + 4y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$.

i.
$$x^2 - 4x + \left(\frac{-4}{2}\right)^2 + y^2 + 6y + \left(\frac{6}{2}\right)^2 = -4 + \left(\frac{-4}{2}\right)^2 + \left(\frac{6}{2}\right)^2$$

 $(x - 2)^2 + (y + 3)^2 = 9$
Centre (2, -3) radius = 3 units
ii. $x^2 + 6x + \left(\frac{6}{2}\right)^2 + y^2 + 4y + \left(\frac{4}{2}\right)^2 = -9 + \left(\frac{6}{2}\right)^2 + \left(\frac{4}{2}\right)^2$
 $(x + 3)^2 + (y + 2)^2 = 4$
Centre (-3, -2) radius = 2 units
> End points of the line are (2, -3) and (-3, -2)
 $m = \frac{-2 + 3}{-3 - 2} = \frac{1}{-5}$

$$-3 - 2 -5$$

$$\frac{y + 3}{x - 2} = \frac{1}{-5}$$

$$-5(y + 3) = 1(x - 2)$$

$$-5y - 15 = x - 2$$

$$x + 5y + 13 = 0$$

- 14. The line x 2y + 4 = 0 is a tangent to a circle at (0, 2). The line y = 2x 7 is a tangent to the same circle at (3, -1). Find:
 - a) The centre and radius of the circle.

Equation of $L_1 \Longrightarrow \frac{y-2}{x-0} = -2$ $\Longrightarrow y = -2x + 2$ Equation of $L_2 \Rightarrow \frac{y+1}{x-3} = \frac{-1}{2}$ $\Rightarrow y = -\frac{1}{2}x + \frac{1}{2}$ $\therefore -2x + 2 = -\frac{1}{2}x + \frac{1}{2}$ 4 - 4x = -x + 1 3 = 3x $\Rightarrow x = 1 \text{ and } y = 0$ Centre (1,0) Radius $=\sqrt{(3-1)^2 + (-1-0)^2} = \sqrt{5}$

- b) The equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$, where *a*, *b* and *c* are integers.
 - $(x-1)^2 + (y-0)^2 = (\sqrt{5})^2$ $x^2 + y^2 - 2x + 1 = 5$ $x^2 + y^2 - 2x - 4 = 0$
- 15. The area of an annulus between two concentric circles is 8π square units. If the equation of the larger circle is given as $4x^2 + 4y^2 - 8x + 8y - 73 = 0$, find the equation of the smaller circle.

Larger circle

$$4x^{2} + 4y^{2} - 8x + 8y = 73$$

 $x^{2} + y^{2} - 2x + 2y = \frac{73}{4}$
 $x^{2} - 2x + \left(\frac{-2}{2}\right)^{2}y^{2} + 2y + \left(\frac{2}{2}\right)^{2}$
 $= \frac{73}{4} + \left(\frac{-2}{2}\right)^{2} + \left(\frac{2}{2}\right)^{2}$
 $(x - 1)^{2} + (y + 1)^{2} = \frac{81}{4}$
Centre $(1, -1)$ radius $= \frac{9}{2} = 4.5$
 $\pi R^{2} - \pi r^{2} = 8\pi$
 $\pi \left(\frac{9}{2}\right)^{2} - \pi r^{2} = 8\pi$
 $\frac{81}{4}\pi - \pi r^{2} = 8\pi$
 $81\pi - 4\pi r^{2} = 32\pi$
 $\frac{9}{4} = r^{2}$
 $r = \frac{7}{2} = 3.5$
Equation of the smaller circle
 $(x - 1)^{2} + (y + 1)^{2} = \frac{49}{4}$
 $x^{2} - 2x + 1 + y^{2} + 2y + 1 = \frac{44}{4}$
 $4x^{2} - 8x + 4 + 4y^{2} + 8y + 4 = 4x^{2} + 4y^{2} - 8x + 8y - 41 = 0$

4

= 49

16. Calculate the length of the tangent from a point (-9, 9) to the circle whose equation is $x^2 + y^2 + 6x - 10y - 2 = 0$.

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} + y^{2} - 10y + \left(\frac{-10}{2}\right)^{2} = 2 + \left(\frac{6}{2}\right)^{2} + \left(\frac{-10}{2}\right)^{2}$$

(x + 3)² + (y - 5)² = 36
Centre (-3, 5) Radius = 6 units
A0 = $\sqrt{(-9 + 3)^{2} + (9 - 5)^{2}} = \sqrt{36 + 16} = \sqrt{52}$
AB = $\sqrt{(\sqrt{52})^{2} - 6^{2}} = \sqrt{52 - 36} = 4$ units

17. In the figure below, ABCD is a square inscribed in a circle whose equation is

 $x^2 + y^2 - 6x - 6y + 10 = 0$. Calculate, in terms of π , the area of the shaded segments.

Area of shaded region = $(8\pi - 16)$ sq. units

18. In the figure below, the circle passes through the points (-2, 0), (6, 0), (0, -2) and (0, 6).#Gurus filesPage 6 of 22

(b) The equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ where *a*, *b* and *c* are integers

- $(x-2)^{2} + (y-2)^{2} = (\sqrt{20})^{2}$ $x^{2} 4x + 4 + y^{2} 4y + 4 = 20$ $x^{2} + y^{2} 4x 4y 12 = 0$
- 19. Given that a circle whose equation is $0.25x^2 + 0.25y^2 + x + ky 1 = 0$ passes through a point (-2, 4). Find:

(a) The value of k

$$0.25x^{2} + 0.25y^{2} + x + ky - 1 = 0$$

$$\frac{1}{4}x^{2} + x + \frac{1}{4}y^{2} + ky = 1$$

$$x^{2} + 4x + y^{2} + 4ky = 4$$

$$x^{2} + 4x + \left(\frac{4}{2}\right)^{2} + y^{2} + 4ky + \left(\frac{4k}{2}\right)^{2} = 4 + \left(\frac{4}{2}\right)^{2} + \left(\frac{4k}{2}\right)^{2}$$

$$(x + 2)^{2} + (y + 2k)^{2} = 8 + 4k^{2}$$
Centre (-2, -2k) radius = $\sqrt{8 + 4k^{2}}$

$$r = \sqrt{(-2 + 2)^{2} + (-2k - 4)^{2}} = \sqrt{8 + 4k^{2}}$$

$$4k^{2} + 16k + 16 = 8 + 4k^{2}$$

$$16k = -8$$

$$k = -\frac{1}{2}$$

(b) The centre and the radius of the circle.

Centre $\left[\left(-2, \left(-2 \times \frac{-1}{2}\right)\right)\right] = (-2, 1)$ Radius $= \sqrt{8 + \left(4 \times \frac{1}{4}\right)} = \sqrt{9} = 3$ units

20. Three points A(3, -1), B(1, 4) and C(-4, 2) lie on a circle. Calculate:

(a) The centre and the radius of the circle.

$$(x-1)^{2} + (y-4)^{2} = (x-3)^{2} + (y+1)^{2}$$

$$4x - 10y = -7 \dots (i)$$

$$(x-1)^{2} + (y-4)^{2} = (x+4)^{2} + (y-2)^{2}$$

$$10x + 4y = -3 \dots (ii)$$
Solving eqn (i) and (ii) simultaneously,

$$20x + 8y = -6$$

$$20x - 50y = -35 - 58y = 29$$

$$\Rightarrow y = \frac{1}{2}$$

$$4x = -7 + \left(10 \times \frac{1}{2}\right) = -2$$

$$\Rightarrow x = -\frac{1}{2}$$
Centre $\left(-\frac{1}{2}, \frac{1}{2}\right)$

$$r = \sqrt{\left(1 + \frac{1}{2}\right)^{2} + \left(4 - \frac{1}{2}\right)^{2}}$$

$$= \sqrt{2.25 + 12.25}$$

$$= \sqrt{14.5} = 3.808$$

(b) The equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ where *a*, *b* and *c* are integers.

$$\left(x + \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\sqrt{14.5}\right)^{2}$$

$$x^{2} + x + \frac{1}{4} + y^{2} - y + \frac{1}{4} = 14.5$$

$$x^{2} + y^{2} + x - y - 14 = 0$$

GRAPHS OF CUBIC FUNCTIONS

1. (a) Complete the table below for $y = x^3 + 3x^2 - 6x - 8$

x	-5	-4	-3	-2	-1	0	1	2	3
y	-28	0	10	8	0	-8	-10	0	28

(b) On the grid provided, draw the graph of $y = x^3 + 3x^2 - 6x - 8$ for $-5 \le x \le 3$ Use the scale: 1 cm represents 1 unit on the x - axis

2. (a) Complete the table below for $y = x^3 + 2x^2 - 5x - 6$

x	-4	-3	-2	-1	0	1	2	3
y	-18	0	4	0	-6	-8	0	24

(b) On the grid provided, draw the graph of $y = x^3 + 2x^2 - 5x - 6$ for $-4 \le x \le 3$ Use the scale: 1 cm represents 1 unit on the x - axis

3. (a) Complete the table below for $y = x^3 + 4x^2 - 5x - 5$ for $-5 \le x \le 2$

#Gurus files

Page 10 of 22

y 15 19 13 3 -5 -5 9	x	-4	-3	-2	-1	0	1	2
	y	15	19	13	3	-5	-5	9

(b) On the grid provided draw the graph of for $y = x^3 + 4x^2 - 5x - 5$ for $-5 \le x \le 2$ Use a scale of 1 cm to represent 1 unit on the x – axis and 2 cm to represent 5 units on the y – axis.

4. (a) Complete the table below for $y = x^3 + x^2 - 12x$ for $-5 \le x \le 4$

Values of x are x = 1, x = -1 and x = -4

x	-5	-4	-3	-2	-1	0	1	2	3	4
y	-40	0	18	20	12	0	-10	-12	0	32

(b) On the grid provided draw the graph of for $y = x^3 + x^2 - 12x$ for $-5 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on the x – axis and 1 cm to represent 10 units on the y – axis.

(d) State the maximum and minimum value of $y = x^3 + x^2 - 12x$ Maximum turning point (-2.36, 20.75)

Minimum turning point (1.69, -12.6)

5. (a) Complete the table below for $y = 4x^3 - 8x^2 - 15x + 9$ for $-2 \le x \le 3$

	x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
	у	-25	0	12	14	9	0	-10	-18	-21	-16	0
(b)	(b) On the grid provided draw the graph of for $y = 4x^3 - 8x^2 - 15x + 9$ for $-2 \le x \le 3$. Use											

a scale of 2 cm to represent 1 unit on the x – axis and 1 cm to represent 5 units on the y – axis.

(c) Using the graph drawn;

- i. Solve the equation $4x^3 8x^2 15x + 9 = 5x 15$ Drawing the graph of y = 5x - 15 x -2 0 1.5 3 y -25 -15 -7.5 0Values of x are x = 3, x = 1 and x = -2
- ii. Find the range of values of x for which: $4x^{3} - 8x^{2} - 15x + 9 \ge 0$ Values of x are $-1.5 \le x \le 0.5$ $4x^{3} - 8x^{2} - 15x + 9 < 0$ Values of x are $-\infty \le x < -1.5$ and $0.5 \le x \le 3$

GRAPHICAL DETERMINETION OF LAWS

1. Two variables A and B are connected by the equation $A = kB^n$ where k and n are constants. The table below gives values of A and B.

А	1.5	1.95	2.51	3.20	4.50
В	1.59	2.51	3.98	6.31	11.5

- a) Find a linear equation connecting A and B. $A = kB^n$ Introducing logarithm to base 10 on both sides, we get: $\log A = \log k + n \log B$
- b) On square paper draw a suitable line graph to represent the relation in (a) above (scale 1cm to represent 0.1 units on both axis). (5 marks)

c) Use your graph to estimate the values of k and n in to one decimal place. (3 marks) $\log k = 0.06$

$$k = 10^{0.06} = 1.148$$

n = gradient of the graph = 0.56

(2 marks)

2. Two quantities P and n, are connected by the equation $P = AK^n$ where A and K are constants. The table below shows some corresponding values of n and P.

	Ν	2	4	6	8	10				
	Р	9.8	19.4	37.4	74.0	144.0				
. `	State the linear equation connecting D and n									

a) State the linear equation connecting P and n. $P = AK^n$ $\log P = \log A + n \log K$

(5 marks)

Introducing logarithms on both

sides, we get:

b) On the grid provided, draw a suitable straight line.

	gria prov	iaca) ai aii	a bancable i	ser angine mit	
Ν	2	4	6	8	10
Р	9.8	19.4	37.4	74.0	144.0
oa P	0 9912	1 2878	1 5729	1 8692	2 1 5 8 4

4. The relationship between the two variables E and F is believed to be of the form $F = a + bE^{-1}$, where **a** and **b** are constants.

5

a)	Comple	ete the	table	below	to	two o	lecimal	l pl	laces.	
----	--------	---------	-------	-------	----	-------	---------	------	--------	--

(2 marks)

	\mathbf{L}	1	Z	3	4	3	0		
	F	7.0	6.0	5.7	5.5	5.4	5.3]	
	$^{1}/_{E}$	1	0.50	0.33	0.25	0.20	0.17		
b)	Use the val	ues on the	table abov	e to draw a	a suitable li	inear graph	n of Fagai	$\frac{1}{F}$ on	
	the grid pr	ovided.						(3 marks)	
	1/E	≣							
	1								_
	0.5								_
	o	1	2	3	4	5	6	7	F
	-0.5								-
					F =	$\frac{b}{2} - 2.48$			
						E			
	-1								_
			/						
	-1.5								
		/							

c) Use the graph to estimate the values of **a** and **b**. (3 marks) $a \Rightarrow y$ intercept = -2.48 $b \Rightarrow gradient of the graph = 0.5$ d) What is the relationship between F and E. (1 marks) $F = \frac{0.5}{E} - 2.48$ OR F = $0.5E^{-1} - 2.48$ e) Find E correct to 4 significant figures when F= 6.4 (1 marks) $6.4 = \frac{0.5}{E} - 2.48$ $E = \frac{0.5}{8.88} = 0.0563$

#Gurus files

Г

Page 17 of 22

5. In an experiment involving two variables t and r, the following results were obtained.

t	1.0	1.5	2.0	2.5	3.0	3.5
r	1.50	1.45	1.30	1.25	1.05	1.00

a) On the grid provided, draw the line of best fit for the data.

- b) The variables r and t are connected by the equation r = at + k where **a** and **k** are constants. Determine;
 - i. The values of **a** and **k**.
 - $a \Rightarrow gradient = -0.21$
 - $k \Rightarrow y intercept = 1.74$
 - ii. The equation of the line of best fit.

$$r = -0.21t + 1.74$$

iii. The value of t when r = 0.

$$t = 8.12$$

6. Two variables *R* and *P* are connected by a function $R = kP^n$ where *k* and *n* are constants.

			8		-
Р	3	3.5	4	4.5	5
R	36	49	64	81	100
log P	0.48	0.54	0.60	0.65	0.70
log R	1.56	1.69	1.81	1.91	2.00

The table below shows the data involving the two variables.

(a) Complete the table above for $\log P$ and $\log R$ correct to 2 decimal places.

(b) Express $R = kP^n$ in a linear form.

$\log R = \log k + n \log P$

(c) Using a scale of 1 cm for 0.1 on the x - axis and 1 cm for 0.2 on the y - axis, draw a line of best fit to represent the information.

7. Two quantities *P* and *r* are connected by the equation $P = ar^n$ where *a* and *n* are constants. The

table below gives the values of *P* and *r*.

P	1.2	1.5	2.0	2.5	3.5	4.5
r	1.58	2.25	3.39	4.74	7.86	11.50

(a) Express the equation $P = ar^n$ in the form y = mx + c where m and c are constants. $\log P = \log a + n\log r$

(b) Complete the table above for $\log P$ and $\log r$ correct to 2 decimal places.

Р	1.2	1.5	2.0	2.5	3.5	4.5
r	1.58	2.25	3.39	4.74	7.86	11.50
log P	0.079	0.176	0.301	0.398	0.544	0.653
log r	0.199	0.352	0.530	0.676	0.895	1.061

(c) On the grid below, draw the linear graph to represent the information above.

8. The variables *P* and *Q* are connected by the equation $P = ab^Q$ where *a* and *b* are constants. The values of *P* and *Q* are given below.

Р	6.56	17.7	47.8	129	349	941	2540	6860
Q	0	1	2	3	4	5	6	7
log P	0.82	1.25	1.68	2.11	2.54	2.97	3.40	3.84

- (a) Complete the table for $\log P$ correct to 2 decimal places.
- (b) State the equation that would give a straight line. $\log P = \log a + Q \log b$
- (c) On the grid provided below, draw a suitable straight line graph to represent this information. Use the scale of 1 cm for 1 unit on the horizontal axis and 1 cm for 0.5 units on the vertical axis.

(d) From your graph, determine the law connecting *P* and *Q*. $\log P = 0.43Q + 0.82$

(e) Find P when Q = 4.6log P = 0.82 + (0.43 × 4.6) = 2.798 $p = 10^{2.798} = 628.05$ 9. Two variable quantities R and t are connected by the equation $R = kt^n$ where k and n are constants. The table below gives the values of R and t.

R	1.82	2.14	2.51	2.95	3.47	4.17	4.79	5.62	7.59
t	1.58	2.0	2.51	3.16	3.98	5.01	6.31	7.94	12.0
log R	0.26	0.33	0.40	0.47	0.54	0.62	0.68	0.75	0.88
log t	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.08

- a) Find a linear equation which connects R and t. $\log R = \log k + n \log t$
- b) On the graph provided, draw a suitable straight line graph to represent the relation in part (a) above. (4 marks)

n = gradient = 0.7 $\log k = y intercept = 0.12$ $k = 10^{0.12} = 1.318 \approx 1.3$

#Gurus files

(2 marks)