ANATOMY & PHYSIOLOGY CLUSTER B.

Cardiovascular System cont'd

By: L. Ayora

Control of blood vessel diameter

- Sympathetic nervous system
 - -Vasomotor centre
- Autoregulation
 - -Exercise; e.g. lactic acid accumulation in muscle causes vasodilatation
 - -Hypoxia; vasodilatation follows an episode of reduced tissue blood flow
 - -**Tissue damage;** e.g. in inflammation, mediators such as histamine, prostaglandins and bradykinin lead to vasodilatation

KENYA MEDICAL TRAINING COLLEGE

Training for Better Health

The relationship between sympathetic stimulation and blood vessel diameter.

Sympathetic nerve fibre Impulses in sympathetic fibre Lumen Vessel wall			A A A A A A A A A A A A A A A A A A A
	Resting situation	Vasodilatation	Vasoconstriction
Sympathetic stimulation	Moderate	Decreased	Increased
Smooth muscle	Moderate tone	Relaxed	Contracted
Thickness of vessel wall	Moderate	Thinner	Thicker
Diameter of lumen	Moderate	Increased	Decreased
Peripheral resistance in arterioles	Moderate	Decreased	Increased
	COICAL TOAIN	INC COLLECE	

Health

Better

Train

Internal respiration

 Exchange of gases between capillary blood and local body cells

Diffusion of nutrients and waste products between Diffusion of nutrients and waste products between

Effect of capillary pressures on water movement between capillaries and cells.

Objectives

By the end of the lesson, the learner should be able to:

- Describe the structure of the heart and its position within the thorax
- Trace the circulation of the blood through the heart and the blood vessels of the body
- Outline the conducting system of the heart

- Relate the electrical activity of the cardiac conduction system to the cardiac cycle
- Describe the main factors determining heart rate and cardiac output.

Heart.

- cone-shaped hollow muscular organ.
- It is about 10 cm long and is about the size of the your fist.
- It weighs about 225 g in women and is heavier in men (about 310 g).

Structure

- The heart is composed of three layers of tissue:
 - Pericardium,
 - Myocardium and
 - Endocardium.

Layers of the heart wall.

(Epicardium)

Myocardium

13

Cardiac muscle showing intercalated discs

The myocardium is thickest at the apex and thins out towards the base

Training for Better Health

Endocardium

 Forms the lining of the myocardium and the heart valves.

KENYA MEDICAL TRAINING COLLEGE

Training for Better Health

• Flattened epithelial cells

Interior of the heart

ANAT/PHY CLUSTER B L A Training for Better Health

Interior of the heart

Flow of blood through the heart

Aorta...

Conducting system of the heart

Nerve supply to the heart

- ANS [Cardiovascular centre in Medulla Oblongata]
 - Sympathetic NS
 - Parasympathetic NS
 - Vagus nerve
- Effect of sympathetic and parasympathetic nervous stimulation?

Factors affecting heart rate

- Autonomic nervous system
- Circulating chemicals
- Position: upright vs lying down

- Exercise
- Emotional state
- Age
- Gender: F>M
- Temperature

The cardiac cycle

KEN

Heart sounds

- 'lub dup'.
 - The first sound, 'lub', is fairly loud
 - Closure of the atrioventricular valves.
 This corresponds with ventricular systole.
- The second sound, 'dup', is softer
 - due to the closure of the aortic and pulmonary valves.

Corresponds with atrial systole.

Recall that...

Aortic valve open

Aortic valve closed

Aorta is an elastic blood vessel

Ventricular systole ANAT/PHY CLUSTER Build diastole 2

Electrical changes in the heart

- Electrocardiograph [Apparatus]
- Electrocardiogram (ECG) [Tracing].

Electrical changes in the heart

Terminologies...

Sinus rhythm: 60-100 beats/min
 Origin: SAN

• Tachycardia: Faster heart rate

• Bradycardia: Slower heart rate

ΖŎ

Cardiac Output.

Amount of blood ejected from the heart.

• Cardiac output = Stroke volume x Heart rate.

- Stroke volume depends on:
 - Ventricular End-Diastolic Volume [Preload]
 - Preload depends on Venous return
- Increased VEDV leads to stronger myocardial contraction

Note.

 The capacity to increase the stroke volume with increasing VEDV is finite

Quiz

KENYA MEDICAL TRAINING COLLEGE

 What is the cardiac output for an adult who's stroke volume is 75ml and has a heart rate of 74 beats per minute?

Answer:

• Cardiac output = Stroke volume x Heart rate.

C.O = 75ml X 74 bpm = 5550 ml/Min = 5.5L/min

What are the factors affecting CO?

Box 5.1 Summary of factors affecting cardiac output

Cardiac output = Stroke volume × Heart rate

Factors affecting stroke volume:

- VEDV (ventricular end-diastolic volume)
- Venous return
 - position of the body
 - skeletal muscle pump
 - respiratory pump
- Strength of myocardial contraction
- Blood volume.

Factors affecting heart rate:

- Autonomic nerve stimulation
- Circulating chemicals
- Activity and exercise
- Emotional states
- Gender
- Age
- Body temperature
- Baroreceptor reneat/PHY CLUSTER B L.A

BLOOD PRESSURE

Objectives

- By the end of the lesson, learners should be able to:
- i. Define the term blood pressure
- ii. Describe the main control mechanisms for regulation of blood pressure

Blood Pressure

Definition

 Blood pressure is the force or pressure which the blood exerts on the walls of the blood vessels.

Systolic blood pressure. – 120 mmHg

Distolic blood pressure.
 – 80 mmHg

During complete cardiac diastole

Left ventricle contraction

Pulse pressure = Systolic P – Diastolic P

Sphygmomanometer

Blood pressure = Cardiac X Peripheral output resistance

Control of blood pressure (BP)

Short-term control

- Baroreceptor reflex, chemoreceptors, hormones
- Long-term control
 - kidneys and the renin—angiotensin—
 - aldosterone system [R-A-A system]

Blood pressure control

Table 5. systems	1 The sympathetic and pa	arasympathetic nervous
	Sympathetic stimulation	Parasympathetic stimulation
Heart	↑Rate ↑Strength of contraction	\downarrow Rate \downarrow Strength of contraction
Blood vessels	Most constrict	There is little parasympathetic innervation to most blood vessels
	KENYA MEDICAL IRAINI ANAT/PHY CLUSTER Training for Better He	NG COLLEGE

The relationship between stimulation of chemoreceptors and arterial blood pressure

KENYA MEDICAL TRAINING COLLEGE ANAT/PHY CLUSTER B LA Training for Better Health

Pulse

 Wave of distension and elongation felt in an artery wall due to the contraction of the left ventricle

- 60-80 beats/min [rate]
- regularity
- Volume or strength

Quiz

State seven factors that affects the pulse rate

Next lesson:

 To review assignment on CIRCULATION of blood.
 –Pulmonary circulation
 –Systemic circulation

CIRCULATION OF THE BLOOD

Pulmonary circulation

Systemic or general circulation

Circulus arteriosus (circle of Willis).

- 2 anterior cerebral arteries
- 2 internal carotid arteries
- 1 anterior communicating artery
- 2 posterior communicating arteries
- 2 posterior cerebral arteries
- 1 basilar artery.

GE

The vena cavae and the main veins of the limbs.

Venous return from the head and neck

Venous sinuses of the brain viewed from the right

The superior vena cava and the veins which form it.

Read on circulation

KENYA MEDICAL TRAINING COLLEGE

Training for Better Health

- Upper limbs
- Portal circulation
- Lower limbs
- Fetal circulation

summary

The end

Thank you all

