Drug Tables of CVS Pharmacology ### **DRUG SUMMARY TABLE: Drugs Used in Hypertension** | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | | | |--|---|---|---|---|--|--| | Diuretics (see also Chapter | 15) | | | | | | | Hydrochlorothiazide,
chlorthalidone | Block Na/Cl transporter in distal convoluted tubule | Hypertension, mild edema | Oral
Duration: 8–12 h | Hypokalemia, hypergly-
cemia, hyperuricemia,
hyperlipidemia | | | | Furosemide | Block Na/K/2Cl transporter in thick ascending limb | Hypertension, heart
failure, edema,
hypercalcemia | Oral, parenteral
Duration: 2–3 h | Hypokalemia, hypovolemia, ototoxicity | | | | Sympathoplegics | | | | | | | | Centrally acting | | | | | | | | Clonidine | Agonist at α_2 receptors • in CNS this results in <i>decreased</i> SANS outflow | Hypertension | Oral and transdermal
Oral duration: 2–3 days •
transdermal 1 wk | Sedation, danger of severe rebound hypertension if suddenly stopped | | | | Methyldopa | Prodrug converted to meth-
ylnorepinephrine in CNS,
with effects like clonidine | Hypertension | Oral
Duration: 12–24 h | Sedation, induces hemo-
lytic antibodies | | | | Ganglion blockers | | | | | | | | Hexamethonium | Obsolete prototype nicotinic acetylcholine (ACh) receptor blocker in ganglia blocks all ANS transmission | None | Oral, parenteral; no CNS
effect | Severe orthostatic hypoten-
sion, constipation, blurred
vision, sexual dysfunction | | | | | e short-acting ganglion blocker
lion blocker, several hours' dura | | es, controlled hypotension | | | | | Postganglionic neuron b | lockers | | | | | | | Reserpine | Blocks vesicular pump
(VMAT) in adrenergic
neurons | Obsolete in hypertension, Huntington's disease | Oral
Duration: 5 days | Sedation • severe psychiatric depression (high doses) | | | | Guanadrel: blocks release was withdrawn in the Uni | of norepinephrine, depletes sto
ited States) | ores; oral, long duration; seve | re orthostatic hypotension (<i>gu</i> | uanethidine, a similar drug, | | | | Alpha blockers | | | | | | | | Prazosin | Selective α_1 blocker • reduces peripheral vascular resistance • prostatic smooth muscle tone | Mild hypertension,
benign prostatic
hyperplasia | Oral
Duration: 6–8 h | First dose orthostatic hypotension | | | | Doxazosin, terazosin: simil | Doxazosin, terazosin: similar to prazosin but longer duration of action | | | | | | | Beta blockers | | | | | | | | Propranolol | Prototype nonselective β blocker • reduces cardiac output • possible secondary reduction in renin release | Hypertension • many other applications (see Chapter 10) | Oral, parenteral
Duration: 6–8 h (extended
release forms available) | Bronchospasm in asth-
matics • excessive cardiac
depression, sexual dys-
function, sedation, sleep
disturbances | | | | | propranolol but $β_1$ -selective; few pined $α$ and $β$ blockade; oral and | | | | | | (Continued) **Book Snippet** ### DRUG SUMMARY TABLE: Drugs Used in Hypertension (Continued) | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | |--|---|---|---|---| | Vasodilators, oral | | | | | | Calcium channel blocker | s | | | | | Nifedipine, other dihydropyridines | Prototype L-type calcium
channel blockers • combine
moderate vascular effect
with weak cardiac effect | Hypertension, angina | Oral
Duration: 6–24 h | Constipation | | Verapamil, diltiazem oral a
P-glycoprotein transporte | and parenteral; also used in arrh
er (see Chapter 5) | nythmias; greater cardiodepre | essant effects than dihydropyr | idines; verapamil blocks | | Older oral vasodilators | | | | | | Hydralazine | Probably causes release of
nitric acid (NO) by endothe-
lial cells • causes arteriolar
dilation | Hypertension (also used
in heart failure in com-
bination with isosorbide
dinitrate) | Oral
Duration: 6–8 h | Tachycardia, salt and
water retention, lupus-like
syndrome | | Minoxidil | Prodrug, sulfate metabolite
opens K ⁺ channels, causes
arteriolar smooth muscle
hyperpolarization and
vasodilation | Severe hypertension • male-pattern baldness | Oral, topical
Duration: 6–8 h | Marked tachycardia, salt and water retention • hirsutism | | Vasodilators, parenteral | | | | | | Nitroprusside | Releases NO from drug
molecule | Hypertensive emergencies • cardiac decompensation | Parenteral only Duration: minutes • requires constant infusion | Excessive hypotension • prolonged infusion may cause thiocyanate and cyanide toxicity | | Diazoxide | K ⁺ channel opener in
smooth muscle, secretory
cells | Hypertensive emergencies • hypoglycemia due to insulin-secreting tumors | Parenteral for hypertension, oral for insulinoma | Hyperglycemia • edema, excessive hypotension | | Fenoldopam | D ₁ agonist • causes arteriolar dilation | Hypertensive emergencies | Parenteral only, very short duration | Excessive hypotension | | Renin antagonist | | | | | | Aliskiren | Renin inhibitor • reduces angiotensin I synthesis | Hypertension | Oral
Duration: 12 h | Angioedema, renal impairment | | Angiotensin antagonists | | | | | | ACE inhibitors | | | | | | Captopril | ACE inhibitor • reduces angiotensin II synthesis | Hypertension, diabetic
renal disease, heart
failure | Oral
Half-life: 2.2 h but large
doses provide duration
of 12 h | Cough • hyperkalemia
• teratogen | | | pril, others: like captopril but lo | nger half-lives | | | | Angiotensin II receptor b | lockers (ARBs) | | | | | Losartan | Blocks AT ₁ receptors | Hypertension | Oral
Duration: 6–8 h | Hyperkalemia • teratogen | | Candesartan, irbesartan, o | thers: like losartan | | | | # DRUG SUMMARY TABLE: Drugs Used in Angina | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | |--------------------------------------|---|---|---|---| | Short-acting nitrate | | | | | | Nitroglycerin,
sublingual (SL) | Releases nitric oxide (NO),
increases cGMP (cyclic
guanosine monophos-
phate), and relaxes vascu-
lar smooth muscle | Acute angina pectoris • acute coronary syndrome | Rapid onset (1 min) • short duration (15 min) | Tachycardia, orthostatic
hypotension, headache | | Isosorbide dinitrate (SL): li | ke nitroglycerin SL but slightly | longer acting (20–30 min) | | | | Intermediate-acting nitra | te | | | | | Nitroglycerin, oral | Like nitroglycerin SL | Prophylaxis of angina | Slow onset • Duration:
2–4 h | Same as nitroglycerin SL | | | nononitrate, oral: like nitroglyce
te and other oral nitrates: like ni | | | | | Long-acting nitrate | | | | | | Transdermal
nitroglycerin | Like nitroglycerin oral | Prophylaxis of angina | Slow onset • long duration of absorption: 24 h • duration of effect: 10 h (tachyphylaxis) | Same as nitroglycerin SL I loss of response is common after 10–12 h exposure to drug | | Ultrashort-acting nitrite | | | | | | Amyl nitrite | Same as nitroglycerin SL | Obsolete for angina • some recreational use | Volatile liquid, vapors are inhaled • onset seconds Duration: 1–5 min | Same as nitroglycerine SL | | Calcium channel blockers | | | | | | Verapamil | Blocks L-type Ca ²⁺ chan-
nels in smooth muscle
and heart • decreases
intracellular Ca ²⁺ | Angina (both atheroscle-
rotic and vasospastic),
hypertension • AV-nodal
arrhythmias; migraine | Oral, parenteral
Duration: 6–8 h | Constipation, pretibial
edema, flushing, dizziness
• Higher doses: cardiac
depression, hypotension | | Diltiazem: like verapamil; | shorter half-life | , | | | | Nifedipine | Dihydropyridine Ca ²⁺
channel blocker; vascular
> cardiac effect | Angina, hypertension | Oral • slow-release form
Duration: 6–8 h | Like verapamil • less consti-
pation, cardiac effect | | Amlodipine, felodipine, ni | cardipine, nisoldipine: like nifed | lipine but longer acting | | | | Beta blockers | | | | | | Propranolol | Blocks sympathetic effects
on heart and blood
pressure • reduces renin
release | Angina, hypertension, arrhythmias, migraine, performance anxiety | Oral, parenteral
Duration: 6 h | See Chapter 10 | | Atenolol, metoprolol, othe | er β blockers: like propranolol; r | most have longer duration of | action | | | Other antianginal drugs | | | | | | Ranolazine | Blocks late Na ⁺ current
in myocardium, reduces
cardiac work | Angina | Oral
Duration: 10–12 h | QT prolongation on ECG • inhibits CYP3A and 2D6 | | Ivabradine | Blocks pacemaker Na ⁺
current (I _t) in sinoatrial
node, reduces heart rate | Investigational: angina,
heart failure | Oral, administered twice daily | Unknown | | Drugs for erectile dysfund | ction | | | | | Sildenafil, tadalafil,
vardenafil | Block phosphodiesterase
5 • increase cGMP | Erectile dysfunction in men | Oral
Duration: hours | Interaction with nitrates • priapism | ### DRUG SUMMARY TABLE: Drugs Used in Heart Failure | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | |---------------------------------------|---|--|--|--| | Diuretics | | | | | | Furosemide, other loop
diuretics | Reduces preload, edema
by powerful diuretic
action on thick ascending
limb in nephron •
vasodilating effect on
pulmonary vessels | Acute and chronic heart failure, especially acute pulmonary edema • other edematous conditions, hypercalcemia (see Chapter 15) | Oral, parenteral
Duration: 2–4 h | Ototoxicity • hypovolemia,
hypokalemia | | Spironolactone | Antagonist of aldosterone in kidney plus poorly understood reduction in mortality | Chronic heart failure, aldosteronism | Oral
Duration: 24–48 h | Hyperkalemia •
gynecomastia | | Eplerenone: similar to spir | onolactone but lacks gynecon | nastia effect | | | | Angiotensin-converting e | nzyme (ACE) inhibitors and r | eceptor blockers | | | | Captopril | Blocks angiotensin-con-
verting enzyme, reduces
All levels, decreases
vascular tone and aldoste-
rone secretion. Reduces
mortality | Heart failure, hypertension, diabetes | Oral; short half-life
but large doses used
Duration: 12–24 h | Cough, renal damage,
hyperkalemia,
contraindicated in
pregnancy | | Benazepril, enalapril, othe | rs: like captopril | | | | | Losartan, candesartan, oth | hers: angiotensin receptor bloc | kers (see Chapter 11); benefit | s not documented as well as | those of ACE inhibitors | | Positive inotropic drugs | | | | | | Cardiac glycosides:
digoxin | Inhibits Na ⁺ /K ⁺ ATPase
sodium pump and
increases intracellular Na ⁺ ,
decreasing Ca ²⁺ expulsion
and increasing cardiac
contractility | Chronic heart failure,
nodal arrhythmias | Oral, parenteral
Duration: 40 h | Arrhythmogenic! Nausea,
vomiting, diarrhea, visual
and endocrine changes
(rare) | | Sympathomimetics:
dobutamine | Beta ₁ -selective sympathomimetic, increases cAMP and force of contraction | Acute heart failure | Parenteral
Duration: a few minutes | Arrhythmias | | Beta blockers | , | | | | | Carvedilol, metoprolol,
bisoprolol | Poorly understood reduc-
tion of mortality, possibly
by decreasing remodeling | Chronic heart failure | Oral
Duration varies
(see Chapter 10) | Cardiac depression (see
Chapter 10) | | Vasodilators | | | | | | Nitroprusside | Rapid, powerful vasodila-
tion reduces preload and
afterload | Acute severe decompensated failure | IV infusion
Duration: a few minutes | Excessive hypotension • thiocyanate and cyanide toxicity | | Hydralazine + isosorbide dinitrate | Poorly understood reduction in mortality | Chronic failure in African
Americans | Oral | Headache, tachycardia | | Nesiritide | Atrial peptide vasodilator, diuretic | Acute severe decompensated failure | Parenteral
Duration: a few minutes | Renal damage, hypotension | | cAMP cyclic adenosine mono | nh osnh ata | | | | cAMP, cyclic adenosine monophosphate. #### CHECKLIST When you complete this chapter, you should be able to: Describe the distinguishing electrophysiologic action potential and ECG effects of the 4 major groups of antiarrhythmic days and advancing List 2 or 3 of the most important drugs in each of the 4 groups List the major toxicities of those drugs. Describe the mechanism of selective depression by local anesthetic antiarrhythmic agents. Explain how hyperkalemia, hypokalemia, or an antiarrhythmic drug can cause an ### **DRUG SUMMARY TABLE: Antiarrhythmic Drugs** | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | | |---|---|---|---|---|--| | Group 1A | | | | | | | Procainamide | Use- and state-dependent block of I _{Na} channels • some block of I _K channels. Slowed conduction velocity and pacemaker activity • prolonged action potential duration and refractory period | Atrial and ventricular
arrhythmias, especially
after myocardial infarction | Oral and parenteral oral slow-release forms available Duration: 2–3 h | Increased arrhythmias
including torsades, hypoten-
sion, lupus-like syndrome | | | Disopyramide: similar to p | rocainamide but longer durat | ion of action; toxicity includes | s antimuscarinic effects and h | eart failure | | | Quinidine: similar to proce
thrombocytopenia | ainamide but greater toxicity, | including cinchonism (tinnitu | s, vertigo, headache), gastroir | itestinal disturbance, and | | | Group 1B | | | | | | | Lidocaine | Highly selective use- and state-dependent I_{Na} block; minimal effect in normal tissue; no effect on I_{K} | Ventricular arrhythmias
post-myocardial infarc-
tion and digitalis-induced
arrhythmias | IV and IM
Duration: 1–2 h | Central nervous system (CNS) sedation or excitation | | | Mexiletine: similar to lidoo | aine but oral activity and long | ger duration of action; also use | ed in neuropathic pain | | | | Group 1C | | | | | | | Flecainide | Selective use- and state-
dependent block of I_{Na} ;
slowed conduction veloc-
ity and pacemaker activity | Refractory arrhythmias | Oral | Increased arrhythmias • CNS excitation | | | Group 2 | | | | | | | Propranolol | Block of β receptors; slowed pacemaker activity | Postmyocardial infarction
as prophylaxis against
sudden death ventricular
fibrillation; thyrotoxicosis | Oral, parenteral
Duration: 4–6 h | Bronchospasm • cardiac
depression, atrioventricular
(AV) block, hypotension (see
Chapter 10) | | | <i>Metoprolol:</i> similar to propranolol but β_1 -selective | | | | | | | Esmolol: selective β_1 -receptor blockade; IV only, 10-min duration. Used in perioperative and thyrotoxicosis arrhythmias | | | | | | # DRUG SUMMARY TABLE: Antiarrhythmic Drugs (Continued) | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | |---------------------------|--|--|--|---| | Group 3 | | | | | | Amiodarone | Strong I _K block produces marked prolongation of action potential and refractory period. Group 1 activity slows conduction velocity • groups 2 and 4 activity confer additional antiarrhythmic activity | Refractory arrhythmias • used off-label in many arrhythmias (broad spectrum antiarrhythmic action) | Oral, parenteral
Half-life and duration of
action: 1–10 wk | Thyroid abnormalities, deposits in skin and cornea, pulmonary fibrosis, optic neuritis • torsades is rare with amiodarone | | Sotalol | l _k block and
β-adrenoceptor block | Ventricular arrhythmias and atrial fibrillation | Oral
Duration: 7 h | Dose-related torsades de pointes • cardiac depression | | Ibutilide | Selective I _K block • pro-
longed action potential
and QT interval | Treatment of acute atrial fibrillation | Ibutilide is IV only
Duration: 6 h | Torsades de pointes | | Dofetilide | Like ibutilide | Treatment and prophylaxis of atrial fibrillation | Oral
Duration: 7 h | Torsades de pointes | | Group 4 | | | | | | Verapamil | State- and use-dependent
I _{Ca} block slows conduc-
tion in AV node and
pacemaker activity • PR
interval prolongation | AV nodal arrhythmias,
especially in prophylaxis | Oral, parenteral
Duration: 7 h | Cardiac depression,
constipation, hypotension | | Diltiazem | Like verapamil | Rate control in atrial fibrillation | Oral, parenteral
Duration: 6 h | Like verapamil | | Dihydropyridines: calcium | channel blockers but not use | ful in arrhythmias; sometimes | precipitate them | | | Miscellaneous | | | | | | Adenosine | Increase in diastolic I _K of AV node that causes marked hyperpolarization and conduction block • reduced I _{Ca} | Acute nodal tachycardias | IV only
Duration: 10–15 s | Flushing, bronchospasm,
chest pain, headache | | Potassium ion | Increase in all K currents,
decreased automatic-
ity, decreased digitalis
toxicity | Digitalis toxicity and other arrhythmias if serum K is low | Oral or IV | Both hypokalemia and
hyperkalemia are associated
with arrhythmogenesis.
Severe hyperkalemia causes
cardiac arrest | | Magnesium ion | Poorly understood, possible increase in Na ⁺ /K ⁺
ATPase activity | Digitalis arrhythmias
and other arrhythmias if
serum Mg is low | IV | Muscle weakness • severe hypermagnesemia can cause respiratory paralysis | ### **DRUG SUMMARY TABLE: Diuretic Agents** | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | | |--|--|---|--|---|--| | Carbonic anhydras | Carbonic anhydrase inhibitors | | | | | | Acetazolamide | Inhibits carbonic anhydrase. In proximal tubule, bicarbonate reabsorption is blocked and Na ⁺ is excreted with HCO ₃ ⁻ . In glaucoma, secretion of aqueous humor is reduced, and in mountain sickness, metabolic acidosis increases respiration | Glaucoma, mountain sickness • edema with alkalosis | Oral, parenteral Diuresis is self-limiting but effects in glaucoma and mountain sickness persist | Metabolic acidosis; sedation,
paresthesias.
Hyperammonemia in
cirrhosis | | | Dorzolamide, brin. | zolamide: topical carbonic anhydrase | inhibitors for glaucoma only | | | | | Loop diuretics | | | | | | | Furosemide,
also
bumetanide,
torsemide | Inhibit Na ⁺ /K ⁺ /2Cl ⁻ transporter in
thick ascending limb of loop of
Henle. Cause powerful diuresis
and increased Ca ²⁺ excretion | Heart failure, pulmonary
edema, severe hyper-
tension; other forms of
edema; hypercalcemia | Oral, parenteral | Metabolic hypokalemic alkalosis • ototoxicity • hypovolemia • efficacy reduced by nonsteroidal anti-inflammatory drugs. Sulfonamide allergy (rare). | | | Ethacrynic acid: lik | ke furosemide but not a sulfonamide | and has some uricosuric effect | t
 | | | | Thiazide diuretics | | | | | | | Hydrochloro-
thiazide,
chlorthalidone
(thiazide-like);
many other
thiazides | Inhibit Na ⁺ /CI ⁻ transporter in
distal convoluted tubule. Cause
moderate diuresis and reduced
excretion of calcium | Hypertension, mild heart failure, hypercalciuria with stones • nephrogenic diabetes insipidus | Oral | Metabolic hypokalemic alkalosis • early hyponatremia • increased serum glucose, lipids, uric acid • efficacy reduced by nonsteroidal anti-inflammatory drugs. Sulfonamide allergy (rare) | | | K ⁺ -sparing diuretic | rs. | | | | | | Spironolactone,
eplerenone | Steroid inhibitors of cytoplasmic aldosterone receptor in cortical collecting ducts • reduce K ⁺ excretion | Excessive K ⁺ loss when using other diuretics • heart failure • aldosteronism | Oral | Hyperkalemia • gynecomastia (spironolactone only) | | | Amiloride | Inhibitor of ENaC epithelial sodium channels in cortical collecting duct, reduces Na ⁺ reabsorption and K ⁺ excretion | Excessive K ⁺ loss when using other diuretics • usually in combination with thiazides | Oral | Hyperkalemia | | | Triamterene: like a | amiloride but much less potent | | | | | | SGLT2 inhibitors | | | | | | | Canagliflozin,
dapagliflozin | Inhibitors of sodium-glucose
cotransporter in the proximal
tubule, markedly increase glucose
excretion | Diabetes | Oral | Urinary tract infections | | | Osmotic diuretics | | | | | | | Mannitol | Osmotically retains water in tubule by reducing reabsorption in proximal tubule, descending limb of Henle's loop, and collecting ducts • in the periphery, mannitol extracts water from cells | Solute overload in rhab-
domyolysis, hemolysis,
tumor lysis syndrome
• brain edema with coma
• acute glaucoma | Intravenous; short
duration | Hyponatremia followed by hypernatremia • headache, nausea, vomiting | | | | | | | (Continue) | | (Continued) ### **DRUG SUMMARY TABLE: Diuretic Agents (Continued)** | Subclass | Mechanism of Action | Clinical Applications | Pharmacokinetics | Toxicities, Interactions | |--|---|---------------------------------|---------------------|-----------------------------| | ADH agonists | | | | | | Desmopressin,
vasopressin | Agonists at V_1 and V_2 ADH receptors, activate insertion of aquaporin water channels in collecting tubule, reduce water excretion • vasoconstriction | Pituitary diabetes
insipidus | Subcutaneous, nasal | Hyponatremia • hypertension | | ADH antagonists | | | | | | Conivaptan | Antagonist at V _{1a} , V ₂ receptors | SIADH, hyponatremia | Parenteral | Infusion site reactions | | Tolvaptan: like conivaptan, more selective for V_2 receptors
Demeclocycline: used in SIADH, mechanism unclear | | | | | ADH, antidiuretic hormone; SIADH, syndrome of inappropriate antidiuretic hormone.