# HEMATOLOGY

Dr. I. Quirt Adriana Cipolletti, Jeremy Gilbert and Susy Hota, chapter editors Leora Horn, associate editor

| APPROACH TO THE BLOOD FILM 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEMATOLOGIC MALIGNANCIES                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANEMIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overview         MYELOID MALIGNANCIES                                                                                                                                                                                                                                                                                                                                                                                      |
| IRON METABOLISM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acute Myeloid Leukemia (AML)                                                                                                                                                                                                                                                                                                                                                                                               |
| Iron Intake (Dietary)<br>Physiologic Causes of Increased Fe Requirements<br>Iron Absorption<br>Iron Transport<br>Iron Storage<br>Iron Indices<br>Laboratory Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHRONIC MYELOPROLIFERATIVE26<br>DISORDERS<br>Common Features<br>Polycythemia Rubra Vera (PRV)<br>Chronic Granulocytic (Myelogenous) Leukemia (CML)<br>Idiopathic Myelofibrosis<br>Essential Thrombocythemia (ET)                                                                                                                                                                                                           |
| IRON DEFICIENCY 5<br>Physiologic Causes<br>Pathological Causes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MYELODYSPLASTIC SYNDROMES                                                                                                                                                                                                                                                                                                                                                                                                  |
| Clinical Presentation<br>Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LYMPHOID MALIGNANCIES                                                                                                                                                                                                                                                                                                                                                                                                      |
| Treatment<br>Recovery Time<br>Anemia Refractory to Treatment with Oral Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) .30                                                                                                                                                                                                                                                                                                                                                                                     |
| THE ANEMIA OF CHRONIC DISEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hodgkin's Disease and Non-Hodgkin's Lymphoma                                                                                                                                                                                                                                                                                                                                                                               |
| LEAD POISONING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Staging<br>Hodgkin's Disease                                                                                                                                                                                                                                                                                                                                                                                               |
| SIDEROBLASTIC ANEMIA 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Non-Hodgkin's Lymphoma                                                                                                                                                                                                                                                                                                                                                                                                     |
| HEMOGLOBIN AND       7         HEMOGLOBINOPATHIES       Thalassemia         I. Heterozygous: β-Thalassemia Minor       II. Homozygous: β-Thalassemia Major         III. Alpha Thalassemias       Sickle Cell Anemia         Megaloblastic Anemia       Megaloblastic Anemia         B12 Deficiency       Pernicious Anemia         Folate Deficiency       Hemolytic Anemias         I. Hereditary Hemolytic Anemias       Structural Abnormalities in Cytoskeleton         Enzymatic Abnormalities in RBC       II. Acquired Hemolytic Anemias         Autoimmune Hemolytic Anemias       Autoimmune Hemolytic Anemia         RBC Fragmentation Syndromes       Thrombotic Thrombocytopenic Purpura and         Hemolytic Uremic Syndrome       Purpura and | MALIGNANT CLONAL.33PROLIFERATIONS OF B CELLSChronic Lymphocytic Leukemia (CLL)Plasma Cell Myeloma (Multiple Myeloma)Light Chain DiseaseMonoclonal Gammopathy of<br>Unknown Significance (MGUS)Macroglobulinemia of Waldenstrom<br>Macroglobulinemia-Hyperviscosity Syndrome<br>Bone Marrow TransplantationTUMOUR LYSIS SYNDROME.36WBC DISORDERS.36Neutrophilia<br>Leukemoid Reactions<br>Neutropenia<br>Agranulocytosis.37 |
| APLASTIC ANEMIA15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLOOD PRODUCTS AND TRANSFUSIONS                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>HEMOSTASIS</b> 16Three Phases of HemostasisTests of HemostasisThrombocytopenia & Other Disorders of 1° HemostasisIdiopathic (Autoimmune)Thrombocytopenic Purpura (ITP)Chronic (Adult-type) ITPDisorders of Secondary HemostasisHereditaryAcquiredThrombosisHeparin-Induced Thrombocytopenia (HIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blood Groups         Red Cells         Platelets         Coagulation Factors         Group and Reserve Serum         Acute Complications of Blood Transfusions         Delayed Complications in Transfusions         MEDICATIONS COMMONLY USED IN41         HEMATOLOGY         REFERENCES                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                            |

# APPROACH TO THE BLOOD FILM

## Size

- □ macrocytic
  - increased size
- e.g. low B12, low folate microcytic
  - reduced size
    - e.g. iron deficiency, thalassemia

### Colour

- hypochromatic
  - increase in the size of the central pallor (normal = less than half of
    - the diameter of RBC)
- increased polychromasia (blue cells) indicates increased RBC production by the marrow

## Shape

- Inormal = discocyte (biconcave)
   Ispherocyte = spherical RBC

   e.g. hereditary spherocytosis, immune hemolytic anemia
   fragmented cells (schistocytes) = split RBC

   e.g. microangiopathic hemolytic anemia (TTP, DIC, vasculitis, elsewards) = split RBC
   e.g. microangiopathic hemolytic anemia (TTP, DIC, vasculitis, elsewards) = split kis head to be a split for the splane.
- e.g. inicidaligiopathic henolytic alternia (TT, Dic, A. glomerulonephritis), prosthetic heart valve
   elliptocyte (ovalocyte) = oval, elongated RBC

   e.g. hereditary elliptocytosis, megaloblastic anemia
   sickle cell = sickle-shaped RBC
- e.g. sickle cell disorders, HbSC, HbSS
   target cell = bell-shaped, looks like target on dried film
- e.g. liver disease, hemoglobin S and C, thalassemia, Fe deficiency
   teardrop cell (darcocyte) = single pointed end, looks like a teardrop
- e.g. myelofibrosis

### Distribution

rouleaux formation = aggregates of RBC resembling stacks of coins e.g. artifact, paraprotein (multiple myeloma, macroglobulinemia)

## Inclusion

- 🖵 nuclei
  - immature RBC
    - indicates serious medical disease
    - e.g. severe anemia, leukemia, bone marrow metastases
- Heinz bodies
  - denatured hemoglobin
- e.g. G6PD deficiency □ Howell-Jolly bodies
  - - small nuclear remnant with the colour of a pyknotic nucleus
  - e.g. post-splenectomy, hyposplenism, hemolytic anemia, megaloblastic anemia
- basophilic stippling
  - deep blue granulations of variable size and number, pathologic aggregation of ribosomes
  - e.g. lead intoxication, thalassemia

### Investigations (see Table 1)

# Table 1. RDW (Red Cell Distribution Width)

| Normal                    | Increased                              |
|---------------------------|----------------------------------------|
| anemia of chronic disease | iron deficiency                        |
| thalassemia               | dual deficiency (e.g. iron and folate) |
|                           | myelodysplastic syndrome               |
|                           | AIHA                                   |
|                           | liver disease                          |
|                           | pernicious anemia                      |
|                           | folate deficiency                      |
|                           |                                        |

# **CLINICAL APPROACH TO ANEMIA**

- acute vs chronic
   decreased production vs increased destruction
- anemia vs pancytopenia
- based on MCV
- rule out dilutional anemia (low Hb due to increased effective circulating volume)

### Table 2. Differential Diagnosis of Anemia Based on MCV

| Hypochromic microcytic                                                                                                                          | Normochromic normocytic                                                                                                                                                                                                                                   |                                                                                                            | Macrocytic                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MCV<80)                                                                                                                                        | (80 <mcv<100)< td=""><td>(MCV&gt;100)</td></mcv<100)<>                                                                                                                                                                                                    |                                                                                                            | (MCV>100)                                                                                                                                                                          |
| <ul> <li>Fe deficiency</li> <li>Thalassemia</li> <li>Lead Poisoning</li> <li>Sideroblastic</li> <li>Chronic disease<br/>(some cases)</li> </ul> | Low Reticultocytes:<br>• Myelodysplasia<br>• Infiltration (leukemia,<br>myeloma, mets, infection)<br>• Myelofibrosis<br>• Aplasia<br>• Chronic Disease<br>(some cases)<br>• Liver Disease<br>• Uremia<br>• Endocrine<br>(hyper/hypothyroid,<br>Addison's) | High Reticulocytes:<br>• Hemolytic anemia<br>• Post-hemorrhagic anemia<br>• Treated nutritional deficiency | <ul> <li>Megaloblastic <ul> <li>B12</li> <li>Folate</li> <li>Drugs</li> </ul> </li> <li>Myelodysplasia</li> <li>Liver Disease</li> <li>Alcohol</li> <li>Reticulocytosis</li> </ul> |

### **Hematological History**

- ID: background: Mediterranean, Asian, black (thalassemia), black (sickle cell)
- presenting symptom & HPI: depend on how rapidly the anemia develops
  - fatigue, malaise, weakness, palpitations, syncope, dyspnea, headache, vertigo, tinnitus
- PMH: past anemias, therapies, past blood loss (GI/GU), blood donation history, menstrual history, signs/symptoms of renal, liver, endocrine
- disturbances, AIDS and other chronic diseases, malignancies
- family Hx: important in hereditary anemia; ask about anemia, jaundice, gallbladder disease, splenectomy
- medications: drugs may cause aplasia, macrocytic/megaloblastic states, hemolysis, blood loss
- G diet: iron, folic acid, vitamin B12 supplementation: amount, frequency, duration, reason
- alcohol consumption: quantify amount and duration (toxic effect on bone marrow or anemia due to liver disease)

### Physical Exam

- □ HEENT: pallor: mucous membranes, conjunctivae (Hb < 90 g/L), icterus, cervical lymphadenopathy, ocular bruits (Hb < 55 g/L), glossitis
- CVS: tachycardia, postural changes, systolic flow murmur, wide pulse pressure, CHF
- GI: hepatomegaly, splenomegaly, rectal (occult blood)
- $\Box$  skin: pallor, jaundice, skin creases (Hb < 75 g/L), telangiectasia as in hemolytic anemia, koilonychia (spoon-shaped nails) as in iron deficiency anemia

# **IRON METABOLISM**

### **IRON INTAKE (Dietary)**

- " "average" Canadian adult diet = 10-20 mg Fe/day

- absorption = 5-10% (0.5-2 mg/day)
   males have a positive Fe balance
   menstruating females have a negative Fe balance

#### PHYSIOLOGIC CAUSES OF INCREASED FE REQUIREMENTS 2x basal need

- infancy-growth spurt
   puberty-growth spurt, menarche
  - pregnancy-maternal RBC, fetus

• 4 donations/year = 1 g

- pregnancy-men
   blood donation
   500 mL b • 500 mL blood = 250 mg Fe
- 3x basal need 4x basal need
- 4x basal need

# **IRON ABSORPTION**

□ in duodenum iron combines with apoferritin to form ferritin that is absorbed through villi

| Table 3. Intraluminal Factors in Absorption of Non-Heme Iron |                                                                                                                 |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Promoters                                                    | Inhibitors                                                                                                      |  |  |
| Gastric HCl                                                  | Achlorhydria<br>Antacids                                                                                        |  |  |
| Reducing agents <ul> <li>ascorbic acid</li> </ul>            | Oxidants                                                                                                        |  |  |
| In Fe <sup>2+</sup> form                                     | In Fe <sup>3+</sup> form                                                                                        |  |  |
| Inorganic form                                               | Organic form                                                                                                    |  |  |
| Soluble chelators<br>• amino acids<br>• sugars<br>• alcohol  | Non-absorbable chelators<br>• phosphate (milk)<br>• phytates (cereals)<br>• oxalate (spinach)<br>• tannin (tea) |  |  |

## **IRON TRANSPORT**

majority of non-heme Fe in plasma is bound to transferrin

- Transferrin
  - beta-globulin

  - carries Fe from mucosal cell to RBC precursors in marrow
    carries Fe from storage pool in hepatocytes and macrophages to RBC precursors in marrow

## **IRON STORAGE**

□ Fe is stored in two forms: ferritin and hemosiderin

- Gerritin
  - ferric Fe complexed to a protein called apoferritin
    - hepatocytes are main site of ferritin storage
- minute quantities are present in plasma in equilibrium with intracellular ferritin hemosiderin
  - aggregates or crystals of ferritin with the apoferritin partially removed
  - macrophage-monocyte system is main source of hemosiderin storage

# **IRON INDICES**

bone marrow aspirate is the gold standard test for iron stores

serum ferritin

- single most important blood test for iron stores
- falsely elevated in inflammatory disease, liver disease (from necrotic hepatocytes), neoplasm and hyperthyroidism ٠
- serum iron
- varies significantly daily
  a measure of all non-heme Fe present in blood
  virtually all serum iron is bound to transferrin
  only a trace of serum Fe is free or complexed in ferritin
- total iron binding capacity (TIBC)
   high specificity for decreased iron, low sensitivity
  - measure of total amount of transferrin present in blood
  - normally, one third of the TIBC is saturated with Fe, remainder is unsaturated
- saturation
  - serum Fe divided by TIBC, expressed as a proportion or a %

# **INTERPRETING IRON INDICES**

| Table 4. Interpreting Iron Indices |                         |            |      |                       |                         |
|------------------------------------|-------------------------|------------|------|-----------------------|-------------------------|
|                                    | Ferritin                | Serum Iron | TIBC | RDW                   | Saturation              |
| Iron Deficiency                    | $\downarrow \downarrow$ | Ļ          | Ť    | ↑                     | $\downarrow \downarrow$ |
| Chronic Disease                    | ↑/N                     | ↓/N        | ↓/N  | Ν                     | N                       |
| Sideroblastic Anemia               | 1                       | 1          | Ν    | No (dimophic picture) | _                       |
| Iron Overload                      | 1                       | Ť          | Ν    | —                     | 1                       |

# LABORATORY FEATURES

- □ Fe stores diminished
  - decreased stainable iron in marrow
  - serum ferritin decreased
- Fe stores absent (in order of increasing Fe deficiency)
  - serum Fe falls
  - TIBC increases
  - hemoglobin falls
  - microcytosis (Hb levels of 100-110 g/L or 10-11 g/dL)
  - hypochromia (Hb 90-100 g/L or 9-10 g/dL)

# **IRON DEFICIENCY**

- I most common cause of anemia in Canada
- imbalance of intake vs. requirements or loss
- □ may indicate the presence of serious GI disease

# PHYSIOLOGIC CAUSES

□ increased need for iron in the body

# **PATHOLOGIC CAUSES**

- in adult males and post-menopausal females, Fe deficiency is usually related to chronic blood loss
- dietary deficiencies (rarely the only etiology)
  - cow's milk (infant diet)
  - "tea and toast" (elderly)
- absorption imbalances
  - post-gastrectomy
  - malabsorption
- □ hemorrhage
  - obvious causes menorrhagia
  - occult peptic ulcer disease, aspirin, GI tract cancer
- □ intravascular hemolysis
  - hemoglobinuria
  - hemosiderinuria
  - cardiac valve RBC fragmentation

# **CLINICAL PRESENTATION**

- iron deficiency may cause fatigue before clinical anemia develops
- brittle hair
- dysphagia (esophageal web, Plummer-Vinson ring)
- 🖵 náils 🎽 🗋
  - brittle
    - koilonychia
- 🖵 glossitis
- angular stomatitis
- □ pica (appetite for bizarre substances e.g. ice, paint, dirt)

# DIAGNOSIS

major diagnostic difficulty is to distinguish from anemia of chronic disease
 serum

- ferritin < 20 is diagnostic of iron deficiency anemia
- iron deficiency anemia unlikely if ferritin > 22-322
- platelet count may be elevated

### peripheral blood film (see Colour Atlas H3)

- hypochromic microcytosis: RBCs are under hemoglobinized due to lack of Fe
- pencil forms
- target cells (thin)
- bone marrow
  - intermediate and late erythroblasts show micronormoblastic maturation
  - Fe stain (Prussian blue) shows decreased iron in macrophages
  - · decreased normal sideroblasts

# TREATMENT

- Let the underlying cause
- different preparations available: tablets, syrup, parenteral (if malabsorption)
- □ dose: ferrous sulphate 325 mg PO TID or ferrous gluconate 300 mg PO TID until anemia corrects and then for 3 months after

# **RECOVERY TIME**

- reticulocytes begin to increase after one week
- Hb normalizes by 10 grams per week
- if serum ferritin is normal then discontinue iron therapy

# ANEMIA REFRACTORY TO TREATMENT WITH ORAL IRON

### medication

- poor preparation (e.g. expired)
- drug interactions
- patient
  - poor compliance
  - continued bleeding malabsorption (rare)
- physician

  - misdiagnosis

# THE ANEMIA OF CHRONIC DISEASE

# Etiology

- infections
- cancer
   inflammatory and rheumatologic disease
- renal disease
- lendocrine disorders (e.g. thyroid)

### Pathophysiology

- a mild hemolytic component is often present
- red blood cell survival modestly decreased
- erythropoietin levels are normal or slightly elevated but are inappropriately low for the degree of anemia
- □ iron cannot be removed from its storage pool in hepatocytes and reticuloendothelial cells

### Diagnosis

- a diagnosis of exclusion, biochemically rule out Fe deficiency
- serum
  - serum iron, TIBC, and % saturation all normal or slightly reduced
  - serum ferritin is normal or increased
- peripheral blood
  - usually normocytic and normochromic if the anemia is mild

  - may be microcytic and normochromic if the anemia is moderate
    may be microcytic and hypochromic if the anemia is severe but rarely < 90 g/L)</li>

bone marrow

- normal or increased iron stores
- · decreased "normal" sideroblasts

### Management

- resolves if underlying disease is treated
- lerythropoietin may normalize the hemoglobin value
- dose of erythropoletin required higher than for patients with renal disease
- only treat patients who can benefit from a higher hemoglobin level

# LEAD POISONING

- L: Lead Lines on gingivae and epiphyses of long bones on X-ray
- E: Encephalopathy and Erythrocyte basophilic stippling
- A: Abdominal colic and microcytic Anemia

**D: D**rops: wrist and foot drop. **D**imercaprol and **ED**TA as first line of treatment

# SIDEROBLASTIC ANEMIA

- group of disorders with various defects in the porphyrin biosynthetic pathway leading to a reduction in heme synthesis resulting in an increase in cellular iron uptake
- characterized by presence of abnormal erythroid precursors in marrow

### **Types of Sideroblasts**

- "normal" sideroblasts
  - aggregates of ferritin, diffusely spread throughout the red blood cell cytoplasm
  - small
  - found in normal individuals
- "ring" sideroblasts
  - iron deposited in the mitochondria forms a ring around the red blood cell nucleus
  - large
  - abnormal finding

**Etiology** hereditary

- rare X-linked (defective D-aminolevulinic acid synthetase – rate-limiting enzyme in heme synthesis)
- median survival is 10 years
- acquired
  - primary
    - may be a preleukemic phenomenon (10%)
    - secondary
      - toxins
        - drugs (isoniazid), ethanol
        - neoplasms and consequent chemotherapy (alkylating agents)
        - collagen vascular disease

### Diagnosis

🖵 serum

- iron overload: increased serum iron, normal TIBC, increased ferritin
- peripheral blood
  - dimorphic picture (normal and hypochromic population)
- bone marrow
  - required for diagnosis
  - bizarre megaloblastic changes
  - ring sideroblasts
  - increased iron stores

### Management

treatment of underlying cause

- oral pyridoxine (vitamin B6)
  - hereditary and secondary acquired forms usually responsive
  - myelodysplastic sideroblastic anemia not responsive

# HEMOGLOBIN AND HEMOGLOBINOPATHIES

### **Hemoglobin Structure and Production**

- $\Box$  4  $\alpha$  genes are located on chromosome 16
- $\square$  2  $\beta$  genes are located on chromosome 11  $\square$  heme group in centre with iron
- Infine group in centre with non
   fetal hemoglobin, HbF (δ 2) switches to adult forms HbA (β2) and HbA2 (δ 2) at 3-6 months of life
   HbA constitutes 97% of adult hemoglobin
   HbA2 constitutes 3% of adult hemoglobin
   beware of the possibility of mixed defects e.g. β-thalessemia minor and sickle cell trait

# THALASSEMIA

 $\Box$  defects in production of Hb  $\beta$  that leads to microcytosis

# I. HETEROZYGOUS: β-Thalassemia Minor

common among people of Mediterranean and Asian descent

### **Clinical Presentation**

- depends on extent of disease
   mild or no anemia
- possible palpable spleen
- may be masked by Fe deficiency

## Diagnosis

### 🖵 sērum

- Hb 90-140 g/L, MCV < 70
- peripheral blood

  - microcytosis +/- hypochromia
    target cells and increased poikilocytosis ("fish RBC") may be present
  - basophilic stippling usually present
- Hb electrophoresis
  - specific: Hb A2 increased to 0.025-0.05 (2.5-5%) (normal 1.5-3.5%)
  - non-specific: 50% have slight increase in HbF

### Management

- not necessary to treat
   patient and family should receive genetic counselling

# II. HOMOZYGOUS: β-Thalassemia Major

## Pathophysiology

- autosomal recessive
- Ineffective chain synthesis leading to ineffective erythropoiesis and hemolysis of RBC
- □ increase in HbF

## **Clinical Presentation**

- □ initial presentation at 3-6 months due to replacement of HbF by HbA
- Severe anemia develops in the first year of life
- ☐ jaundice ☐ stunted a
- stunted growth and development (hypogonadal dwarf)
- gross hepatosplenomegaly (extramedullary hematopoiesis) Ō
  - changes (expanded marrow cavity)
    - skull x-ray has "hair-on-end" appearance
      pathological fractures common
- levidence of increased Hb catabolism (e.g. gallstones)
- death from
  - untreated anemia (transfuse)

  - infection (treat early)
    hemochromatosis (late, secondary to transfusions), usually 20-30 years old

# Diagnosis

- 🖵 CBC
  - hemoglobin 40-60 g/L
- peripheral blood
  - hypochromic microcytosis

  - increased reticulocytes
    basophilic stippling, target cells
    postsplenectomy blood film shows Howell Jolly bodies, erythroblasts, and thrombocytosis
- Hb electrophoresis
  - Hb A: 0-0.10 (0-10%) , (normal > 95%) • Hb F: 0.90-1.00 (90-100%)
- Management
- L transfusion
- Fe chelation to prevent iron overload (e.g. desferal)
- bone marrow transplant

# III. ALPHA THALASSEMIA

similar distribution to thalassemia but a higher frequency among Asians

# Pathophysiology

- $\Box$  autosomal recessive  $\Box$  deficit of  $\alpha$  chains
- □ 4 grades of severity depending on the number of defective alpha genes
  - 1 silent • 2 - trait
  - 3 HbH Disease (presents in adults due to excess chain production)
  - 4 Hb Bart's (hydrops fetalis, not compatible with life)

# Diagnosis

- peripheral blood film
  - microcytes, hypochromia, occasional target cells
     screen for HbH inclusion bodies
- Hb electrophoresis not diagnostic DNA analysis using alpha gene probe

### Management

 $\Box$  same as  $\beta$  thalassemia

### SICKLE CELL ANEMIA

autosomal recessive

amino acid substitution of valine for glutamate in position 6 of beta globin chain

### Mechanisms of Sickling (see Figure 1)

at low pO<sub>2</sub>, deoxy Hb S polymerizes, leading to rigid crystal-like rods that distort membranes = SICKLES
 the pO<sub>2</sub> level at which sickling occurs is related to the precentage of Hb S present

- in heterozygotes (Hb AS) sickling occurs at a pO<sub>2</sub> of 40 mmHg
  - in homozygous (Hb SS), sickling occurs at a pO<sub>2</sub> of 80 mmHg
- □ sickling is aggravated by
  - increased H<sup>+</sup>
  - increased CO2
  - increased 2,3-DPG
  - increased temperature and osmolality



### **Heterozygous: Hb S Trait**

□ clinical presentation

- patient will appear normal except at times of extreme hypoxia and infection diagnosis
  - serum: Hb normal
  - peripheral blood: normal except for possibly a few target cells •
  - Hb electrophoresis (confirmatory test): Hb A fraction of 0.65 (65%);
  - Hb S fraction of 0.35 (35%)

### **Homozygous: Hb S Disease**

□ clinical presentation

- chronic hemolytic anemia
- jaundice in the first year of life
- vaso-occlusive crises (infarction) leading to pain, fever and leukocytosis e.g. acute chest syndrome (pulmonary infarct) associated with infection, such as parvovirus, leading to aplastic anemia, acidosis, dehydration, and hypoxia
- susceptibility to infections by encapsulated organisms due to hyposplenism
- retarded growth and development +/- skeletal changes
- spleen enlarged in child and atrophic in adult
- diagnosis
  - peripheral blood: sickled cells (see Colour Atlas H6)
  - screening test: sickle cell prep
  - Hb electrophoresis (confirmatory test): Hb S fraction > 0.80

### Management

- prevention of crises is the key
  - establish diagnosis
  - avoid conditions that favor sickling (hypoxia, acidosis, dehydration, fever)
  - vaccination in childhood e.g. pneumococcus, meningococcus
    consider prophylaxis penicillin V 250 mg PO bid

  - good hygiene and nutrition
- genetic counselling
   folic acid to avoid folate deficiency

# HEMOGLOBIN AND HEMOGLOBINOPATHIES ... CONT.

hydroxyurea to enhance production of HbF

- causes depression of the gene for HbF or by initiating differentiation of stem cells in which this gene is active; presence of HbF in the SS cells decreases polymerization and precipitation of HbS
- Note: hydroxyurea is cytotoxic and may cause bone marrow suppression

#### **Table 5. Organs Affected by Vaso-Occlusive Crisis** Organ Problem brain seizures, hemiplegia hemorrhage, blindness eye liver infarcts, RUQ syndrome lung chest syndrome gall bladder stones hyperdynamic flow murmurs heart enlarged (child); atrophic (adult) spleen kidney hematuria; loss of renal concentrating ability acute abdomen intestines placenta stillbirths penis priapism digits dactvlitis femoral head aseptic necrosis infarction, infection bone ankle leg ulcers

### **Treatment of Vaso-Occlusive Crisis**

- oxygenhydration (reduces viscosity)
- □ antimicrobials
- correct acidosis
- □ analgesics/narcotics (give enough)
- magnesium (inhibits potassium and water efflux from RBCs thereby preventing dehydration)
- exchange transfusion for CNS crisis
- experimental anti-sickling agents

# **MEGALOBLASTIC ANEMIA**

- $\Box$  failure of DNA synthesis resulting in asynchronous maturation of RBC nucleus and cytoplasm
- non-megaloblastic anemia reflects membrane abnormality with abnormal cholesterol metabolism
- megaloblast = large, nucleated RBC precursor; macrocyte = large RBC

### **Causes of Megaloblastosis**

- Generation of the second second
- antimetabolite drugs
  - methotrexate
    - folate analogues (sulpha drugs)
    - purine/pyrimidine analogues (6-MP, 5-FU)
- □ nitrous oxide

myelodysplasia/some cases of AML

# **B12 DEFICIENCY**

### Etiology

□ if intake stops abruptly body stores last 3-4 years

- 🖵 diet
- strict vegetarian (rare)
- □ gastric
  - mucosal atrophy of pernicious anemia
- post-gastrectomy
   intestinal absorption
- - malabsorption (e.g. Crohn's, celiac sprue, pancreatic disease)
  - stagnant bowel (e.g. blind loop, stricture)
  - fish tapeworm
  - resection of ileum as in Crohn's and celiac sprue
- rare genetic causes

# HEMOGLOBIN AND HEMOGLOBINOPATHIES ... CONT.

### **Pernicious Anemia**

auto-antibodies produced against gastric parietal cells leading to

achlorhydria and no intrinsic factor secretion

- intrinsic factor is required to stabilize B12 as it passes through the bowel
- decreased intrinsic factor leads to decreased ileal absorption of B12
- $\Box$  female:male = 1.6:1
- may be associated with other autoimmune disorders e.g. thyroid and adrenal deficiency
- □ often > 60 years old

### **Neurological Lesions in B12 Deficiency**

- $\Box$  cerebral (common; reversible with B<sub>12</sub> therapy)
  - confusion
  - delirium
  - dementia
- □ cranial nerves
- optic atrophy (rare) □ cord (irreversible damage)
  - subacute combined degeneration
  - posterior columns paresthesias, disturbed vibration, decreased proprioception
  - pyramidal tracts spastic weakness, hyperactive reflexes
- peripheral neuropathy (variable reversibility)
  - usually symmetrical
  - affecting lower limbs more than upper limbs

### Diagnosis

- 🖵 serum
  - anemia often severe +/- neutropenia +/- thrombocytopenia
  - MCV > 120
- low reticulocyte count relative to the degree of anemia
   serum B12 and RBC folate
- - caution: low serum B12 leads to low RBC folate because of failure of folate polyglutamate synthesis in the absence of B12
- blood film
  - oval macrocytes (see Colour Atlas H2A)
  - hypersegmented neutrophils (see Colour Atlas H2B)
- bone marrow
  - differentiates between megaloblastic and myelodysplastic anemias
  - hypercellularity
    - failure of nuclear maturation
  - elevated unconjugated bilirubin and LDH due to marrow cell breakdown
- □ Schilling test to distinguish pernicious anemia from other causes

  - Schilling test: part 1
     tracer dose (1g μg) of labelled B12 (cobalamin (Co\*)), PO
     flushing dose (1mg) of cold B12, IM to saturate tissue binders
    - of B12 thus allowing radioactive B12 to be excreted in urine
    - 24 hour urine Co\* measured

  - 24 flour unite contractured
    normal —> 5% excretion
    Schilling test: part 2
    tracer dose B12 (Co\*) plus intrinsic factor, PO
    - flushing dose of cold B12, injected IM
    - 24 hour urine Co\* measured
    - normal test result (> 5% excretion) = pernicious anemia
    - abnormal test result (< 5% excretion) = intestinal causes (malabsorption)

#### Management

B12 100 µg IM monthly for life or oral B12

watch for hypokalemia (due to return of potassium to intracellular sites) and thrombocythemia

# FOLATE DEFICIENCY

umore common than B12 deficiency because folate stores are depleted in 3-6 months

- □ folate complexes with gastric R binder
- R binder is replaced by intrinsic factor in the duodenum
   this complex is absorbed in the jejunum

### Etiology

- diet (folate is present in leafy green vegetables)
  - most common cause
- e.g. infancy, poverty, alcoholism

  - malabsorption

#### HEMOGLOBIN AND HEMOGLOBINOPATHIES . . . CONT.

### □ drugs/chemicals

- alcohol
- anticonvulsants
- antifolates (MTX)
- birth control pills
- increased demand
- pregnancy
  - prematurityhemolysis
  - hemodialysis
  - psoriasis, exfoliative dermatitis

### **Clinical Presentation**

- mildly jaundiced due to hemolysis of RBC secondary to ineffective hemoglobin synthesis
- glossitis and angular stomatitis
- Tare
  - melanin pigmentation
- purpura secondary to thrombocytopenia
   folate deficiency at time of conception and early pregnancy has been linked to neural tube defects

### Management

- never give folate alone to individual with megaloblastic anemia because it
- will mask  $B_{12}$  deficiency and neurological degeneration will continue folic acid 15 mg PO/day x 3 months; then 5 mg PO/day maintenance if cause not reversible
- I folic acid supplementation 1 mg PO/day will protect against elevated homocysteine levels (risk factor for CAD)

# HEMOLYTIC ANEMIAS (HA) (see Colour Atlas H4)

### Classification

- □ hereditary causes (intrinsic)
  - abnormal membrane (spherocytosis, elliptocytosis)
  - abnormal enzymes (pyruvate kinase deficiency, G6PD deficiency)
    abnormal hemoglobin synthesis (thalassemias, hemoglobinopathies)
- □ acquired causes (extrinsic)
  - immune
    - hemolytic transfusion reaction
    - idiopathic immune HA
    - drugs
    - cold agglutinins
      secondary autoimmune HA
    - non-immune
      - RBC fragmentation syndromes
      - paroxysmal nocturnal hemoglobinuria
      - liver disease
      - hypersplenism
      - march hemoglobinuria

# **Clinical Presentation**

- jaundice
- cholelithiasis
- splenomegaly
- skeletal abnormalities
- leg ulcers
   regenerative crisis
- folic acid deficiency
- iron overload with extravascular hemolysis
- iron deficiency with intravascular hemolysis

### Diagnosis

- indirect not specific to hemolytic anemias
  - increased reticulocyte count
  - reduced haptoglobin
  - increased unconjugated bilirubin
  - increased urine bilinogen
  - increased LDH
- tests exclusive for intravascular hemolysis
   serum free hemoglobin present
   methemalbuminemia (heme + albumin)

  - hemoglobinuria (immediate)
  - hemosiderinuria (delaved)

# HEMOGLOBIN AND HEMOGLOBINOPATHIES ... CONT.

### Antiglobulin Tests (Coombs' Tests)

direct Coombs' test (direct antiglobulin test)

- purpose: detect antibodies or complement on the surface of RBC
- by adding anti-antibodies to the RBC; the RBC agglutinate in a positive test
- indications
  - hemolytic disease of newborn
  - hemolytic anemia
  - AIHA
  - hemolytic transfusion reaction
- indirect Coombs' test (indirect antiglobulin test)
  - purpose: detect antibodies in serum that can recognize antigens on RBC
    by mixing serum with donor RBC and then anti-antibodies; RBCs
  - - agglutinate in a positive test
  - indications
    - · cross-matching of recipient serum with donor's RBC
    - atypical blood group
    - blood group antibodies in pregnant women
    - antibodies in AIHA

# **I. HEREDITARY HEMOLYTIC ANEMIAS**

# STRUCTURAL ABNORMALITIES IN CYTOSKELETON

### **Hereditary Spherocytosis**

- autosomal dominant with variable penetrance
- □ incidence 22 per 100,000
- most common type of hereditary hemolytic anemia
- abnormality in spectrin (compound in RBC membrane)
- blood film shows spherocytes (see Colour Atlas H8)
- increased osmotic fragility
- sometimes confused with immune hemolytic anemia
- L treatment: splenectomy (immunize against pneumococcus first); avoid in childhood

### **Hereditary Elliptocytosis**

- autosomal dominant
- □ incidence 20-50 per 100,000
- abnormality in spectrin interaction with other membrane proteins
   25-75% elliptocytes
- hemolysis is usually mild
- treatment: splenectomy for severe hemolysis (immunize against pneumococcus first)

# **ENZYMATIC ABNORMALITIES IN RBC**

### **G6PD Deficiency**

### **Clinical Presentation**

- □ X-linked recessive
- oxidant drug-induced hemolysis
  - sulfonamides
  - primaguine
  - nitrofurantoin
  - acetanilid
- □ favism (fava beans)
- neonatal jaundice
- chronic hémolytic anemia
- □ infection

### **Diagnosis and Management**

- high index of suspicion
- G<br/>
  G<
  - should not be done when reticulocyte count is high in acute crisis. PBF shows Heinz bodies (granules in red blood cells due to damaged hemoglobin molecules) and features of intravascular hemolysis
- L transfusion in severe cases
- stop offending drugs or food

# **II. ACQUIRED HEMOLYTIC ANEMIAS AUTOIMMUNE HEMOLYTIC ANEMIA**

| Table 6. Classification of autoimmune hemolytic anemia |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                              |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                        | Warm                                                                                                                                                                                                                                                                                         | Cold                                                                                                                                                                                                         |  |
| Antibody Coating RBC                                   | • lgG                                                                                                                                                                                                                                                                                        | • IgM                                                                                                                                                                                                        |  |
| Temperature Detect by Coomb's                          | • 37°C                                                                                                                                                                                                                                                                                       | • 4-37 °C                                                                                                                                                                                                    |  |
| Direct Coombs Test                                     | • positive for antibodies                                                                                                                                                                                                                                                                    | positive for complement                                                                                                                                                                                      |  |
| Etiology                                               | <ul> <li>idiopathic</li> <li>secondary to lymphoproliferative disorder <ul> <li>e.g. CLL, Hodgkin's</li> </ul> </li> <li>secondary to autoimmune disease <ul> <li>e.g. SLE</li> </ul> </li> <li>drug induced <ul> <li>penicillin</li> <li>quinine</li> <li>methyldopa</li> </ul> </li> </ul> | <ul> <li>idiopathic</li> <li>secondary to infection <ul> <li>e.g. mycoplasma, EBV</li> </ul> </li> <li>secondary to lymphoproliferative disorder <ul> <li>e.g. macroglobulinemia, CLL</li> </ul> </li> </ul> |  |
| Blood Film (see Colour Atlas H5)                       | • spherocytes                                                                                                                                                                                                                                                                                | • agglutination                                                                                                                                                                                              |  |
| Management                                             | <ul> <li>treat underlying cause</li> <li>corticosteroids</li> <li>splenectomy</li> <li>immunosupression</li> </ul>                                                                                                                                                                           | <ul> <li>treat underlying cause</li> <li>warm patient</li> <li>plasmapheoresis</li> <li>immunosuppresion</li> </ul>                                                                                          |  |

# **RBC FRAGMENTATION SYNDROMES**

### Classification

cardiac and large vessel abnormalities (macroangiopathic)

- small vessel disease (microangiopathic) (see Colour Atlas H7)
   thrombotic thrombocytopenic purpura (TTP)/ hemolytic uremic syndrome (HUS)
  - DIC
  - metastatic carcinoma

  - eclampsiamalignant hypertension
  - vasculitis
- infection (malaria, clostridia)
   drowning
   thermal injury

### Diagnosis

evidence of hemolysis, schistocytes, hemosiderinuria, hemoglobinuria

Management Treat underlying disease, replace iron if indicated

# THROMBOTIC THROMBOCYTOPENIC PURPURA AND **HEMOLYTIC UREMIC SYNDROME**

| ТТР                                                                                                                                            | HUS                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| • predominantly adult                                                                                                                          | predominantly children                             |
| <ul> <li>neurological symptoms (90%)</li> <li>H/A, somnolence, confusion, focal neurological findings,<br/>convulsion, stupor, coma</li> </ul> |                                                    |
| <ul> <li>purpura (90%) due to severe thrombocytopenia</li> <li>epistaxis, hematuria, hemoptysis and GI bleed</li> </ul>                        | • purpura (90-100%) due to severe thrombocytopenia |
| <ul> <li>epistaxis, nematuria, nemoptysis and Gi bleed</li> <li>microangiopathic hemolytic anemia</li> </ul>                                   | microangiopathic hemolytic anemia                  |
| • fever (90-100%)                                                                                                                              |                                                    |
| • GI                                                                                                                                           |                                                    |
| • N/V, abdominal pain                                                                                                                          |                                                    |
| • renal (40-80%)                                                                                                                               | • renal symptoms (90%)                             |
| • abnormal UA, oliguna, AKF                                                                                                                    | • abnormal UA, oliguna, AKF                        |
| • etiology                                                                                                                                     | • Eliology                                         |
| • familial                                                                                                                                     | • E. Wil selotype OT 71:17 Vilotoxii               |
| • secondary TTP                                                                                                                                |                                                    |
| • infection                                                                                                                                    |                                                    |
| enterobacteriaceae                                                                                                                             |                                                    |
| • viral: flu. HIV                                                                                                                              |                                                    |
| systemic diseases                                                                                                                              |                                                    |
| SLE and other CVD                                                                                                                              |                                                    |
| <ul> <li>cancer and chemotherapeutic drugs</li> </ul>                                                                                          |                                                    |
| • diagnosis                                                                                                                                    | diagnosis                                          |
| <ul> <li>by clinical picture</li> </ul>                                                                                                        | by clinical picture                                |
| <ul> <li>CBC: anemia, thrombocytopenia</li> </ul>                                                                                              | • same as TTP                                      |
| • PT, PTT: normal                                                                                                                              | • stool C+S                                        |
| • ESR: normal                                                                                                                                  |                                                    |
| negative Coombs'                                                                                                                               |                                                    |

\*Key characteristics bolded

### Management

- plasmapheresis is the treatment of choice
   steroid is treatment of choice only in mild disease

# APLASTIC ANEMIA

destruction of hematopoietic cells of the bone marrow

# Etiology radiation drugs

- - anticipated (chemotherapy)
     idiosyncratic (chloramphenicol, phenylbutazone)
- □ chemicals
- benzene and other organic solvents
   DDT and insecticides
   post viral e.g. hepatitis B, parvovirus
   idiopathic
- often immune (T-cell mediated)
   paroxysmal nocturnal hemoglobinuria
   marrow replacement
   congenital

### **Clinical Presentation**

- Clinical Presentation
   occurs at any age
   slightly more common in males
   can present acutely or insidiously
   anemia or neutropenia or thrombocytopenia (any combination) +/- pancytopenia
   thrombocytopenia with bruising, bleeding gums, epistaxis
   anemia with SOB, pallor and fatigue

# APLASTIC ANEMIA ... cont.

presentation of neutropenia ranges from infection in the mouth to septicemia
 absence of splenomegaly

### Diagnosis

- □ serum
  - neutrophil count  $< 5.0 \text{ x } 10^{9}/\text{L}$
  - platelet count < 20 x 10<sup>9</sup>/L
  - corrected reticulocyte count < 1%</li>
- blood film
- decreased normal RBC □ bone marrow
  - aplasia or hypoplasia of marrow cells with fat replacement

### Management

- removal of offending agents
   supportive care (red cell and platelet transfusions, antibiotics)
- antithymocyte globulin (50-60% patients respond)
   cyclosporine
- allogeneic bone marrow transplantation

  - minimize blood products on presentation
    only irradiated, leuko-depleted blood products should be used
  - CMV negative blood for CMV negative patients

# 

# THREE PHASES OF HEMOSTASIS

### **Primary Hemostasis**

- □ goal is to rapidly stop bleeding
- ō vessel injury results in collagen and subendothelial structure exposure and release of vasoconstrictors
- blood flow is impeded and platelets come in contact with vessel wall
- □ platelets adhere to collagen and are activated resulting in change of shape and release of ADP and thromboxane A2
- these factors further recruit and aggregate more platelets resulting in formation of hemostatic plug



# **Figure 2. Primary Hemostasis**

- **Secondary Hemostasis** platelet plug formed through primary hemostasis is reinforced through process of secondary hemostasis and a stable plug is formed
- secondary pathways involved in the activation of coagulation factors
  - include
    - intrinsic
      - · activated when vessel wall remains intact
    - slow pathway • extrinsic
      - activated when there is injury to vessel wall
        - fast pathway

# HEMOSTASIS ... CONT.





# **TESTS OF HEMOSTASIS**

| Type of hemostatis | Test                                                                                                                                                                                                                                                                               | <b>Reference Range</b> | Purpose                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Primary            | platelet count<br>bleeding time<br>platelet aggregation                                                                                                                                                                                                                            | 2-12 mins              | <ul> <li>to quantitate platelet number</li> <li>platelet function</li> <li>platelet function</li> </ul>                  |
| Secondary          | PTT - depends on lab                                                                                                                                                                                                                                                               | 22-35 s                | <ul> <li>measures intrinsic pathway<br/>factors VIII, IX, XI, XII</li> </ul>                                             |
|                    | PT - depends on lab                                                                                                                                                                                                                                                                | 11-24 s                | <ul> <li>measures extrinsic pathway<br/>factor VIII in particular</li> </ul>                                             |
|                    | TT - depends on lab                                                                                                                                                                                                                                                                | 14-16 s                | <ul> <li>measures deficiency of fibrinogen<br/>inactivation of prothrombin</li> </ul>                                    |
|                    | INR                                                                                                                                                                                                                                                                                | 1 is normal            | <ul> <li>permits determination of<br/>coagulation status independent<br/>of laboratory performing measurement</li> </ul> |
| Fibrinolysis       | euglobulin lysis time                                                                                                                                                                                                                                                              |                        |                                                                                                                          |
| Other              | <ul> <li>fibrinogen</li> <li>fibrinogen degradation products (FDP:<br/>specific factor assays</li> <li>tests of physiological inhibitors<br/>(antithrombins, protein S, protein C,<br/>hereditary resistance to APC)</li> <li>tests of pathologic inhibitors (e.g. lupu</li> </ul> | s anticoagulant)       |                                                                                                                          |

| Table 9. Signs and Symptoms of Disorders of Hemostasis |                                                                                |                                                                                     |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
|                                                        | Primary (Platelet)                                                             | Secondary (Coagulation)                                                             |  |  |
| Surface Cuts                                           | excessive, prolonged                                                           | normal/slightly prolonged                                                           |  |  |
| <b>Onset After Injury</b>                              | immediate                                                                      | delayed                                                                             |  |  |
| Typical Type and<br>Site of Bleeding                   | superficial<br>i.e. mucosal (nasal, gingival,<br>Gl tract, uterine), petechiae | deep<br>i.e. into joints, muscles, GI tract,<br>GU tract, excessive, post-traumatic |  |  |

# THROMBOCYTOPENIA AND OTHER DISORDERS OF PRIMARY HEMOSTASIS

□ inability to form an adequate platelet plug due to

- disorders of blood vessels
   disorders of platelets
- - abnormal function
  - abnormal numbers

### Classification

### Vascular (Non-Thrombocytopenic Purpura)

hereditary

- hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu)
- connective tissue disorders
- □ acquired
  - purpura simplex (easy bruising)
  - senile purpura
  - dysproteinemias
  - Henoch-Schonlein Purpura
  - scurvy
  - Cushing's syndrome
  - infections
  - drugs

### **Platelets**

- □ dysfunction
  - hereditary
    - von Willebrand's disease, others (rare)
    - acquired
      - drugs eg. ASA, EtOH, NSAIDs
      - uremia
      - myeloproliferative disorders
    - dysproteinemias
- L thrombocytopenia (usually acquired)
  - decreased production • drugs, toxins
    - radiation
    - marrow infiltrate or failure
    - ineffective production
    - megaloblastic anemias
    - myelodysplasia
    - vitamin Bi2, folic acid or iron deficiency
    - viral infections eg. varicella, mumps, HIV, EBV, CMV, parvo
  - increased destruction
    - drugs eg. quinidine, sulfas, thiazides, heparin
    - ITP
    - allo-antibodies
    - HIV positive
  - sepsisincreased consumption
    - DIC
    - microangiopathies (TTP)
  - sequestration
    - splenomegaly
  - dilutional
    - massive transfusion with stored blood

# **IDIOPATHIC (AUTOIMMUNE) THROMBOCYTOPENIC PURPURA (ITP)**

| Table 10. Idiopathic Thrombocytopenic Purpura |                           |                            |  |
|-----------------------------------------------|---------------------------|----------------------------|--|
| Features                                      | Acute ITP                 | Chronic ITP                |  |
| Peak Age                                      | 2-6 years                 | 20-40 years                |  |
| Sex Predilection                              | none                      | F > M (3:1)                |  |
| <b>History of Recent Infection</b>            | common                    | rare                       |  |
| Onset of Bleed                                | abrupt                    | insidious                  |  |
| Platelet Count                                | < 20 x 10 <sup>9</sup> /L | 30-80 x 10 <sup>9</sup> /L |  |
| Duration                                      | usually weeks             | months to years            |  |
| Spontaneous Remissions                        | 80% or more               | uncommon                   |  |

## **CHRONIC (ADULT-TYPE) ITP**

most common cause of isolated thrombocytopenia

diagnosis of exclusion

### Pathophysiology

- □ IgG autoantibody
- spleen
  - site of antibody production and platelet destruction
  - usually not palpable (enlarged in ~ 10%)

### **Clinical Presentation**

- insidious onset
- L may be seen after mild viral illness or after immunization
- Indy be seen after find vital mucosal or skin bleeding
   petechiae and easy bruising
   hematuria
- melena
- epistaxis
- female with menorrhagia

- Laboratory Results
- bone marrow: plentiful megakaryocytes
- critical test to rule out other causes of thrombocytopenia
- anti-platelet antibodies present in most
- increased bleeding time
- PT and PTT normal

### Management

- □ conservative if mild
  - platelet count > 30,000, no mucosal bleeding
- steroids: moderate dose, then taper (80% responsive)
   platelet count < 20-30,000 or evidence of mucosal bleeding</li>
   splenectomy if steroids fail
- IV gamma globulin if steroids and splenectomy fail or if rapid response is required
   other: immunosuppressives, platelets, plasma exchange, Danazol

### Prognosis

- fluctuating course
   overall relatively benign, mortality 1-2%
- $\Box$  major concern is cerebral hemorrhage at platelet counts < 5 x 10<sup>9</sup>/L

# **DISORDERS OF SECONDARY HEMOSTASIS**

### Classification

### I. Hereditary

- Factor VIII: Hemophilia A, von Willebrand's disease
   Factor IX: Hemophilia B (Christmas Disease)
- Factor XI
- other factor deficiences are rare

### **II. Acquired**

- liver disease
- DIC
- vitamin K deficiency
   circulating anti-coagulants (inhibitors) other e.g. primary fibrinolysis

# **HEREDITARY**

- **I. Hemophilia A (factor VIII)** ❑ X-linked, 1/5,000 males ❑ mild (> 5%), moderate (1-5%), severe (< 1%)
- **Clinical Presentation**
- hemarthroses, hematomas, GI and GU bleeding
   bleeding in response to trauma (mild and moderate disease)
- intracranial hemorrhage following head injury
- spontaneous bleeding (severe disease)

- Laboratory Results prolonged PTT, normal INR (PT) decreased factor VIII (< 40% of normal)
- U vWF usually normal or increased

### Management

- minor but not trivial bleeding (eg. hemarthroses)
   heat treated Factor VIII concentrate
   major potentially life-threatening bleeding (eg. multiple trauma)
- heat treated Factor VIII concentrate
   prophylaxis (eg. multiple dental extractions, surgery)
- heat treated Factor VIII concentrate
- DDAVP in mild or moderate hemophilia A

### II. Von Willebrand's Disease

- heterogeneous group of defects
   usually autosomal dominant

- qualitative or quantitative abnormality of vWF
   vWF needed for platelet adhesion and acts as carrier for factor VIII
  - vWF exists as a series of multimers ranging in size
    - the largest ones are most active in mediation of platelet adhesion
      both large and small complex with factor VIII
- both primary and secondary hemostasis affected
   usually mild to moderate in severity

### Classification

- type I: decreased vWF in platelets and plasma (will see prolonged
- bleeding time, decreased factor VIII)
- L type IIA: decreased large and intermediate sized multimers in plasma and
- platelets (will see prolonged bleeding time, normal levels of factor VIII)
   type IIB: largest multimers are missing from plasma but not from platelets

### **Clinical Presentation**

- 🖵 mild
  - asymptomatic
- mucosal and cutaneous bleeding, easy bruising, epistaxis, menorrhagia, gingival bleeding moderate to severe
  - as above but worse, occasionally soft-tissue hematomas, petechiae (rare), GI bleeding, hemarthroses

### Course

I may fluctuate, often improves during pregnancy and with age

- Laboratory Results prolonged bleeding time and PTT decreased factor VIII (5-50%)
- a normal platelet count (except in Type IIB)
   decreased ristocetin cofactor activity
   analysis of multimers

- Management DDAVP is treatment of choice except in Type IIB causes release of vWF and plasminogen activator from endothelial cells trained UP, the appropriate of the large multimers in the circulation can be
- in type IIB, the appearance of the large multimers in the circulation can cause thrombocytopenia
   Hemate P in selected cases
- conjugated estrogens

### **III. Factor IX Deficiency**

- Christmas disease, Hemophilia B
- □ X-linked recessive, 1/30,000 males
- clinical and laboratory features identical to Hemophilia A
- main treatment is Factor IX concentrate

### **IV. Factor XI Deficiency (Rosenthal syndrome)**

- autosomal recessive inheritance
- usually mild, often diagnosed in adulthood
- L treatment: fresh frozen plasma

# ACQUIRED

### I. Liver Disease

- deficient synthesis of all factors except VIII
- aberrant synthesis: fibrinogen
- deficient clearance of hemostatic "debris" and fibrinolytic activators
- accelerated destruction due to dysfibrinogenemias: increased fibrinolysis, DIC
   thrombocytopenia: hypersplenism, folate deficiency, EtOH intoxication, DIC
   platelet dysfunction: EtOH abuse

- miscellaneous: inhibition of secondary hemostasis by FDPs
- peripheral blood smear: target cells
- 🗖 diagnosis
  - factor V because it has the shortest half-life
- elevated INR (PT), PTT and bleeding time
- L treatment: fresh frozen plasma, platelets

### **II. Vitamin K Deficiency**

### Etiology

- poor diet (especially in alcoholics)
- biliary obstruction
- □ chronic liver disease
- malabsorption e.g. celiac disease
- drugs
  - oral anticoagulants produce inhibition of factors II, VII, IX, X, Protein C & S
  - antibiotics eradicating gut flora which is 50 % of vitamin K supply
- hemorrhagic disease of newborn

### Diagnosis

- INR (PT) is elevated out of proportion to the elevation of the PTT
- decreased factors II, VII, IX and X (because vitamin K-dependent)

### Management

- vitamin K 10-20 mg SC (not IM)
- □ Note: PT should improve within 24 hours, if not search for other causes

### **III. Disseminated Intravascular Coagulation (DIC)**

- massive uncontrolled intravascular coagulation resulting in depletion of
- platelets, coagulation factors and fibrinogen not a primary disorder but a syndrome that complicates a number of other conditions

### **Clinical Conditions Associated with DIC**

- activation of procoagulant activity
  - anti-phospholipid antibody
  - intravascular hemolysis (incompatible blood, malaria)
  - tissue factor
  - tissue injury (obstetric catastrophes, leukemia, tumours, liver disease, trauma, burns)
  - snakebité
  - fat embolism
- heat stroke
- endothelial injury
  - infections
  - vasculitis
  - metastatic disease (adenocarcinoma)
  - aortic aneurysm
  - giant hemangioma
- □ reticuloendothelial injury
  - liver disease
  - splenectomy

# HEMOSTASIS ... CONT.

### vascular stasis

- hypotension
  - hypovolemia
  - pulmonary embolus
- other
  - acute hypoxia/acidosis
  - extracorporeal circulation

### Signs of Microvascular Thrombosis (Early DIC)

- neurological: multifocal, delirium, coma, seizures
   skin: focal ischemia, superficial gangrene
   renal: oliguria, azotemia, cortical necrosis
   pulmonary: ARDS

- GI: acute ulceration
- RBC: microangiopathic hemolysis

### Signs of Hemorrhagic Diathesis (Late DIC)

- neurologic: intracranial bleeding
- skin: petechiae, eccyhmosis, oozing from puncture sites
- renal: hematuria
- mucosal: gingival oozing, epistaxis, massive bleeding

### Diagnosis

- Clinical picture
- laboratory
  - primary hemostasis: decreased platelets
  - secondary hemostasis: prolonged INR (PT), PTT, TT, decreased ٠
  - fibrinogen and other factors
  - fibrinolysis increased FDPs, short lysis time
  - extent of fibrin deposition: urine output, urea, RBC fragmentation

### Management

- □ recognize early
- TREAT UNDERLYING DISORDER
- □ life support measures, O2, blood transfusion, fluid therapy
- I replacement of hemostatic elements with platelet transfusion, FFP, cryoprecipitate

# THROMBOSIS

### Virchow's Triad

- □ stasis
- hypercoaguable state
- endothelial injury

- **Etiology** endothelial damage
- □ blood flow
  - stasis
  - turbulence
- hyperviscosity blood components

  - platelets
  - contact factors
  - thrombin Factor VIII
  - fibrin
- hypercoagulable state due to • cancer

  - pregnancy • birth control pills
  - DIC
  - lipids
  - decreased physiological inhibitors (antithrombin-III, protein C, protein S)
  - hereditary resistance to activated protein C (Factor V Leiden mutation)
  - prothrombin variant 20210A
  - nephrotic syndrome

### Management (acute and prophylaxis)

- hyperhomocysteine anticoagulants
   low molecular weight heparin
  - - no test required
  - reduced incidence of HIT unfractionated heparin
    - maintain PTT 1.5-2.5 x the normal control
  - coumadin (see Table 11)
  - hirudin
- thrombolytics
  - snake venom enzymes (ancrod)
  - plasminogen activators (streptokinase, urokinase, tPA)
- □ antiplatelet agents
  - ASA
  - sulfinopyrazone
  - dipyridamole

| Table 11. Monitoring Coumadin (Warfarin) Therapy (therapeutic ranges)                        |                |          |
|----------------------------------------------------------------------------------------------|----------------|----------|
|                                                                                              | II             | NR       |
|                                                                                              | Range          | Target   |
| <ul> <li>pre-operative</li> <li>surgery</li> <li>hip surgery</li> </ul>                      | 1.5-2.5<br>2-3 | 2<br>2.5 |
| prevention of venous thrombosis                                                              | 2-3            | 2.5      |
| • active venous thrombosis, pulmonary embolism and prevention of recurrent venous thrombosis | 2-4            | 3        |
| prevention of arterial thrombo-embolism including mechanical heart valves                    | 3-4.5          | 3.5      |
| • INR should never exceed 5                                                                  |                |          |

# **HEPARIN-INDUCED THROMBOCYTOPENIA (HIT)**

### HIT-I

- 🖵 non-immune
- decrease in platelet count usually seen early (48-72 hours post
- administration) but may take up to 1 week to appear
- L transient thrombocytopenia, returns to normal once heparin discontinued
- no intravascular thrombosis
- □ likely due to platelet aggregation and sequestration

### HIT-II

- immune-mediated
   typically occurs at day 5-15 of heparin therapy and decline is gradual
   HIT can begin sooner in patients who have received heparin in the past three months
- delayed-onset HIT occurs several days after discontinuing heparin
- □ typical platelet count in patients with HIT ranges from 25 to 100 x 109/L

### Pathogenesis

- immunoglobulin-mediated adverse drug reaction
- pathogenic antibody, usually IgG recognizes a multimolecular complex of heparin and platelet factor 4, resulting in platelet activation via platelet Fc receptors and activation of the coagulation system

### **Clinical Complications**

- cases of serious bleeding related to thrombocytopenia have been reported
- intravascular thrombosis
- both venous (DVT, PE, venous gangrene) and arterial thrombi (MI, stroke, limb vessels) can form
- heparin-induced skin necrosis
- unusual thrombotic complications include mesenteric artery or vein occlusion, adrenal hemorrhage and infarction
- □ acute platelet activation syndromes
  - acute inflammatory reactions (eg. fever/chills, flushing, etc.), transient global amnesia

### Laboratory Tests

- C-serotonin release assay
- 🗖 ELISA
  - measures binding of antibody in patients serum to PF4:heparin complex

# HEMOSTASIS ... CONT.

### Management

- discontinuation of heparin
   discontinuation of heparin
   platelet count should return to normal in a few days
   danaparoid (organon) is the preferred agent if anti-thrombic therapy is indicated
   low-molecular-weight heparin is less likely to cause HIT in de novo use but still carries an increased risk if previously sensitized with unfractionated heparin

- other alternatives include ancrod and hirudin
- patient may be re-exposed to heparin only under careful supervision

# HEMATOLOGIC MALIGNANCIES

# **OVERVIEW**

### Myeloid

- clonal stem cell neoplasms
  - acute myeloid leukemia (clonal proliferation of immature cells) myeloproliferative disorders (proliferation of mature cells)
  - - polycythemia rubra vera
      chronic granulocytic (myelogenous) leukemia
      idiopathic myelofibrosis
    - essential thrombocythemia
  - iii. myelodysplastic syndromes (defective differentiation)

### Lymphoid

- all cells arise from a single abnormal lymphoid precursor (B or T) i. acute lymphoblastic leukemia (arise from stem cell)
  - ii.
    - lymphomas (arise from maturing lymphoid cell)
  - iii. Tymphomas (anse from maturing tymphoma)
    Hodgkin's lymphoma
    non-Hodgkin's lymphoma
    iii. malignant clonal proliferation of B cells
    chronic lymphocytic leukemia
    plasma cell dyscrasias
    light chain disease

    - monoclonal gammopathy of unknown significance

    - macroglobulinemia of Waldenstrom
      macroglobulinemia-hyperviscosity syndrome

# MYELOID MALIGNANCIES

# ACUTE MYELOID LEUKEMIA (AML)

- failure of myeloid cell to differentiate beyond blast stage
- clonal proliferation of immature hematopoietic cells
- incidence increases with age
- associated with exposure to benzene, radiation and alkylating agents

### Pathophysiology

- uncontrolled growth of blasts in marrow leads to
  - suppression of normal hematopoietic cells
  - appearance of blasts in peripheral blood
  - accumulation of blasts in other sites
  - metabolic consequences of a large tumour mass

chronic myeloproliferative disorders and myelodysplastic syndromes can transform into AML

### **Clinical Features of AML**

decrease in normal hematopoiesis

- anemia
  - pallor, weakness, fatigue, dyspnea on exertion
- thrombocytopenia
  - purpura
  - mucosal bleeding
  - associated with DIC (promyelocytic leukemia- a type of AML)
- neutropenia —> infections
  - septicemia
  - pneumonitis
  - skin and mucosal infections

# **MYELOID MALIGNANCIES ... CONT.**

- □ accumulation of blast cells in marrow
  - skeletal pain
- bony tenderness, especially sternum
   accumulation of blast cells at other sites
  - - lymphadenopathy
    - hepatosplenomegaly
    - gums
    - skin leukemia cutis
      CNS N/V, H/A, papilledema +/– hemorrhage
    - gonads
- eyes Roth spots (oval retinal hemorrhages surrounding pale spot), blurred vision, diplopia
- □ metabolic effects aggravated by treatment
  - increase in uric acid —> uric acid nephropathy
  - release of phosphates —> decrease in Ca<sup>2+</sup> and Mg<sup>2+</sup>
  - release of pro-coagulants —> DIC

### Diagnosis

### peripheral blood film (see Colour Atlas H11)

- decreased hemoglobin (usually normocytic, normochromic anemia) and platelets
  - variable leukocyte count
  - decrease in normal granulocytes
- presence of blast cells (Auer Rods) azurophilic granules within lysosomes
- bone marrow
  - usually hypercellular
  - increased blast cells > 30% leukemic blasts for definitive diagnosis (normal < 5%)
  - decrease in normal erythropoiesis, myelopoiesis, megakaryocytes
- cytogenetics and molecular analysis
- INR (PT), PTT, FDP, fibrinogen in case of DIC
   increased uric acid, LDH and LFTs
- decreased Ca<sup>2+</sup>
- baseline urea and creatinine
- chest x-ray to r/o mediastinal compression and infection

### **Management of AML**

- cure defined as survival that parallels age-matched population
- □ first step is complete remission- defined as normal peripheral blood
- smear, normal bone marrow with < 5% blasts, and normal clinical state
- Leukemia will recur after complete remission if no further treatment given
- aims of treatment
  - eliminate abnormal clone cytotoxic therapy
    - 1. Induction
    - 2. Consolidation or BMT
  - repopulation of marrow with normal hemopoietic cells
    - consider acceleration with hematopoetic growth factors
    - e.g. G-CSF, GM-CSF if increased incidence of severe infection
- □ supportive care
  - prophylaxis against infection via regular C&S of urine, feces, sputum, oropharynx, catheter sites, perianal area
  - antibiotics if fever with C&S of all orifices and chest x-ray
  - platelet and RBC transfusions CMV negative products
  - prevention and treatment of metabolic abnormalities

### Prognosis

achievement of first remission

- 70-80% if 60 years old, 50% if > 60 years old
- median survival 12-24 months
- 5 year survival 40%
- □ statistics may be improved by BMT 50-60% cure rate

# CHRONIC MYELOPROLIFERATIVE DISORDERS

- □ clonal myeloid stem cell abnormalities leading to qualitative and
- quantitative changes to erythroid, myeloid, and platelet cells
- all disorders may progress to acute myelogenous leukemia
   mainly middle-aged and older patients

# **COMMON FEATURES** increased

- - uric acid • LDH
  - serum B12
  - transcobalamin I
  - eosinophils

  - basophilsblood histamine (from basophils)

pruritus
 bruising
 thrombosis

peptic ulcer disease (histamine increases acid secretion)

| Table 12. Chronic Myeloproliferative Disorders                                                                                           |     |           |     |                            |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----|----------------------------|
|                                                                                                                                          | PRV | CGL (CML) | IMF | ET                         |
| НСТ                                                                                                                                      | ↑ ↑ | ↓/N       | Ļ   | Ν                          |
| WBC                                                                                                                                      | Ť   | ↑ ↑       | 1/↓ | Ν                          |
| PLT                                                                                                                                      | Ť   | 1/↓       | 1/↓ | $\uparrow\uparrow\uparrow$ |
| LAP                                                                                                                                      | ↑ ↑ | Ļ         | ↑/N | ↑/N                        |
| marrow fibrosis                                                                                                                          | ±   | ±         | +++ | ±                          |
| splenomegaly                                                                                                                             | +   | +++       | +++ | +                          |
| hepatomegaly                                                                                                                             | _   | +         | ++  | _                          |
| PRV = polycythemia rubra vera<br>IMF = idiopathic myelofibrosis<br>CGL = chronic granulocytic leukemia<br>ET = essential thrombocythemia |     |           |     |                            |

IMF = idiopathic myelofibrosis

LAP = leukocyte alkaline phosphatase

# **POLYCYTHEMIA RUBRA VERA (PRV)**

autonomous overproduction of erythroid cells

### **Clinical Features**

- secondary to high red cell mass and hyperviscosity
  - headache, dizziness, tinnitus
  - congestive heart failure
  - thrombosis
- □ secondary to platelet abnormalities cerebrovascular accident
  - myocardial infarction
  - phlebitis
- bleeding, bruising
   secondary to high blood histamine (from basophils)
  - pruritus, especially post-bath or shower
    peptic ulcer
- □ secondary to high cell turnover
  - gout (due to hyperuricemia)

## Management

- phlebotomy
  - if symptoms are due to erythrocytosis alone and platelet count
- normal or only slightly increased □ alkylating agents
  - if symptoms systemic or secondary to splenic enlargement
- antihistamines
- allopurinol
- 32p

# CHRONIC MYELOPROLIFERATIVE DISORDERS ... CONT.

### Complications

- vascular complications (thrombosis, hemorrhage)
- myeloid metaplasia
- acute leukemia

### **Causes of Secondary Polycythemia**

- spurious (decrease in plasma volume)
- poor tissue oxygenation
  - high altitude
    - cvanotic congenital heart disease or pulmonary disease
  - hemoglobinopathies with increased O2 affinity
  - carbon monoxide poisoning
- local renal hypoxia
   renal artery stenosis
- renal cysts
   ectopic production of erythropoietin
  - uterine leiomvoma
  - cerebellar hemangioma
  - hepatocellular cancer pheochromocytoma

  - renal cell cancer

## CHRONIC GRANULOCYTIC (MYELOGENOUS) LEUKEMIA (CML)

- overproduction of myeloid cells, erythoid cells and platelets in peripheral blood
- marked myeloid hyperplasia in bone marrow

### **Clinical Features**

- disorder of middle age
   40% asymptomatic
   secondary to splenic involvement
- splenomegaly (most common physical finding)
   shoulder tip pain due to splenic infarction
   secondary to high blood histamine
- pruritus, peptic ulcer
   secondary to rapid cell turnover
- fever, weight loss
- secondary to anemia
- symptoms of anemia most commonly fatigue
- secondary to gross elevation of the WBC (rare)
  - encephalopathy
  - priapism

### **Diagnostic Features**

- Philadelphia (Ph1) chromosome
  - translocation between chromosomes 9 and 22
  - the c-abl proto-oncogene is translocated from chromosome 9 to "breakpoint cluster region" (bcr) of chromosome 22 to produce bcr-c-abl fusion gene, an active tyrosine kinase
  - detection of this fusion gene is a diagnostic test for CML (present in over 90% of patients)
- Leukocyte alkaline phosphatase (LAP)
  - normal constituent of secondary neutrophil granules low or absent (normal or increased in other chronic
  - •
  - myeloproliferative diseases and reactive states)
- peripheral blood film (see Colour Atlas H10)
   leukocytosis with early myeloid precursors
   eosinophils and basophils may be increased

  - hypogranular basophils
- bone marrow
  - myeloid hyperplasia with a left shift, increased megakaryocytes and increased reticulin or fibrosis

### **Course/Outcomes**

- chronic phase
  - normal bone marrow function
  - white blood cells differentiate and function normally
- accelerated phase
  - fever • marked increase in basophils
  - increased extramedullary hematopoiesis (unusual sites) •
  - transformation —> disease similar to idiopathic myelofibrosis
  - pancytopenia secondary to marrow aplasia

acute phase (blast transformation)

- 2/3 develop a picture similar to AML
  - unresponsive to remission induction
- 1/3 develop a picture similar to ALL
  - remission induction (return to chronic phase) achievable
- sepsis
- bleeding thrombosis

## Management

- symptomatic allopurinol and antihistamines
- □ chronic phase
  - hydroxyurea or occasionally busulfan
  - interferon
  - STI 571

only curative treatment is bone marrow transplantation

## **IDIOPATHIC MYELOFIBROSIS (IMF)**

marrow replaced by fibrosis - abnormal megakaryocytes stimulate collagen deposition

### **Clinical Features**

same as CML except no priapism or encephalopathy

**Diagnostic Features** significant hemolysis due to hypersplenism and red cell fragmentation peripheral blood film (see Colour Atlas H16)

- tear drop cells
- red cell and megakaryocyte fragments
  increased polychromasia
  nucleated RBCs and poikilocytes

- giant abnormal platelets due to early release from marrow leukoerythroblastic changes i.e. due to the space occupying lesions in the bone marrow, a variable number of erythroid and myeloid cells are released into the circulation
- bone marrow
  - replaced with fibrosis, difficult to aspirate
    - megakaryocytes normal or increased

### Management

- transfusion
   erythropoietin

- androgens allopurinol and antihistamines folic acid if stores depleted
- desferoxamine for iron overload (iron and aluminum chelator)
- Generation in extremely small doses
   splenectomy in highly selected cases
   bone marrow transplant

### Complications

- refractory anemia
   pancytoponic
- pancytopenia
- transformation to AML
- thrombosis and bleeding

# **ESSENTIAL THROMBOCYTHEMIA**

overproduction of platelets in absence of recognizable stimulus
 invariably above 400,000/mL

# **Clinical Features**

- asymptomatic most common
   bleeding although plantiful bleeding - although plentiful, platelets are not working
- thrombosis
- symptoms 2° to splenic enlargement, high blood histamine, and rapid cell turnover - as per CML and IMF

### **Laboratory Features**

- defect in platelet function may be present
   elevation of phosphatase and potassium in plasma sample due to release of cytoplasmic content from aggregation of platelets

# CHRONIC MYELOPROLIFERATIVE DISORDERS ... CONT.

### Diagnosis

exclude other myeloproliferative diseases and 2° thrombocythemia

### Management

- hydroxyurea
   <sup>32</sup>p
   plateletpheresis
   avoid splenectomy as spleen is removing unwanted platelets

### Complications

- bleedingthrombosis
- leukemic transformation transformation to myelofibrosis

### **Clinical Pearl**

There is an asymptomatic "benign" form of essential thrombocythemia with a stable or slowly rising platelet count; treatment includes observation, ASA, sulfinpyrazone or dipyridamole.

### **Causes of Secondary Thrombocythemia**

- infection
   inflammation (IBD, arthritis)

- malignancy
   hemorrhage
   Fe deficiency
   hemolytic anemia
- post splenectomy
- post chemotherapy

# MYELODYSPLASTIC SYNDROMES

- set of clonal disorders characterized by one or more cytopenias with anemia present
- ineffective hematopoiesis despite presence of adequate numbers of
- progenitor cells (bone marrow is usually hyper-cellular) Considered preleukemic: 30-70% develop AML
- most common in elderly, post-chemotherapy, benzene or radiation exposure
- insidious onset
- □ clinical presentation
  - fatigue, weakness, pallor, infections, bruising and rarely weight loss, fever, and hepatosplenomegaly
- diagnostic triad
  - 1. anemia ± thrombocytopenia ± neutropenia
  - 2. bone marrow hypercellular or normocellular
  - dysmyelopoiesis in bone marrow precursors
- hematological changes
  - RBC: variable morphology with decreased reticulocyte count
    WBC: decrease in granulocytes and abnormal function

  - platelet: either too large or too small and thrombocytopenia

### **FAB Classification**

- refractory anemia (RA)
- refractory anemia with ring sideroblasts (RARS)
- □ refractory anemia with excess blasts (RAEB)
- refractory anemia with excess blasts in transformation (RAEB-T)
- CMML)

### Management

- symptomatic: transfusion, antibiotics
   hematopoietic growth factors (G-CSF, GM-CSF) may decrease risk of infection
- erythropoietics
- AML induction chemotherapy: 50-60% remission, 90% relapse
- □ bone marrow transplant may be curative

# ACUTE LYMPHOBLASTIC LEUKEMIA

### Pathophysiology

develops from any lymphoid cell blocked at a particular stage of development

### **Clinical Features**

□ see AML

50% present with fever

### Diagnosis

- see AML
- leukemic lymphoblasts lack specific morphological or cytochemical features, therefore diagnosis depends on immunophenotyping immunology (B or T lineage)

- cytogenetics

### Treatment

- see AML
   eliminate abnormal clone
  - 1. Induction
  - 2. Consolidation
  - 3. Intensification
  - 4. Maintenance
  - 5. Prophylaxis: CNS with XRT or MTX

### Prognosis

- depends upon response to initial induction or if remission is achieved following relapse
- achievement of first remission: 60-90%
- childhood ALL: 80% long term remission (> 5 years)
   adult ALL: 30-40% 5 year survival

| Table 13. To Differentiate AML From ALL – Remember Big and Small |                                      |  |  |  |
|------------------------------------------------------------------|--------------------------------------|--|--|--|
| AML (see Colour Atlas H11)                                       | ALL (see Colour Atlas H13)           |  |  |  |
| big people (adults)                                              | small people (kids)                  |  |  |  |
| big blasts                                                       | small blasts                         |  |  |  |
| lots of cytoplasm                                                | little cytoplasm                     |  |  |  |
| lots of nucleoli (3-5)                                           | few nucleoli (1-3)                   |  |  |  |
| lots of granules and Auer rods                                   | no granules                          |  |  |  |
| big toxicity of treatment                                        | little toxicity of treatment         |  |  |  |
| big mortality rate                                               | small mortality rate                 |  |  |  |
| myeloperoxidase, sudan black stain                               | PAS (periodic acid schiff)           |  |  |  |
| maturation defect beyond myeloblast or promyelocyte              | maturation defect beyond lymphoblast |  |  |  |

# LYMPHOMAS

# HODGKIN'S DISEASE AND NON-HODGKIN'S LYMPHOMA STAGING

Stage I

- involvement of a single lymph node region or extralymphatic organ or site
- Stage II
  - involvement of two or more lymph node regions OR an extralymphatic site and one or more lymph node regions on SAME side of diaphragm
- □ Stage III
  - involvement of lymph node regions on BOTH sides of the diaphragm
  - may or may not be accompanied by single extralymphatic site or splenic involvement

Stage IV

diffuse involvement of one or more extralymphatic organs including bone marrow

# LYMPHOMAS ... CONT.

### Subtypes

- □ A = Absence of B symptoms
   □ B = Presence of B symptoms

### **B** Symptoms

- unexplained fever > 38°C
   unexplained weight loss (> 10% of body weight in 6 months)
- night sweats

# **HODGKIN'S DISEASE**

- substantial number represents monocloncal B cell disorders
- $\Box$  bimodal distribution with peaks at the age of 20 years and > 50 years

### **Clinical Features**

- Iymphadenopathy (neck, axilla)
- B symptoms
- □ classical symptoms
  - pruritus painful nodes following alcohol consumption

### Diagnosis

- nodal biopsy (see Colour Atlas H15)
   bone marrow biopsy for Reed-Sternberg cell polynucleated cells derived from B-cells
  - nodular sclerosis is the most common histological subtype

### Work-up

- - normocytic normochromic anemia
  - leukocytosis in 1/3 of patients
  - eosinophilia
  - platelet count is normal or increased in early disease but decreased in advanced disease

biochemistry

- RFTs to assess renal excretion of chemotherapeutics
- LFTs to r/o liver involvement
- uric acid
- ESR to monitor disease progress
- Ca<sup>2+</sup>, ALP, phosphate for bone metastasis
- Let chest x-ray to r/o mediastinal masses and lung metastases

CT of chest, abdomen and pelvis

### Management

- high cure rate
- Stage I-II: radiation therapy or chemotherapy plus local field radiation
- (less risk of second malignancy)
- □ Stage III-IV: combination chemotherapy eg. ABVD or MOPP
- I relapse: high dose chemotherapy, bone marrow transplant

### **Complications of Treatment**

- diminished fertility
  - consider oophoropexy/sperm banking before radiation
- post-splenectomy sepsis
  - immunize pre-splenectomy
- hypothyroidism
- secondary malignancies • < 2% risk of MDS, AML
  - usually within 4 years after exposure to alkylating agents and radiation
  - solid tumours in the radiation fields > 10 years after exposure
- accelerated cardiovascular disease

# **NON-HODGKIN'S LYMPHOMA**

### **Clinical Features**

- painless superficial lymphadenopathy usually > 1 lymph region
   usually presents as widespread disease
- constitutional symptoms (fever, weight loss, night sweats) not as common as in Hodgkin's disease
- cytopenia: anemia +/- neutropenia +/- thrombocytopenia if bone marrow fails
- abdominal symptoms or signs

  - hepatosplenomegaly
    retroperitoneal and mesenteric involvement (2nd most common site of involvement)
- oropharyngeal involvement in 5-10% with sore throat and obstructive apnea

# LYMPHOMAS ... CONT.

### Diagnosis

- Ivmph node biopsy
  - fine needle aspiration occasionally sufficient, core biopsy preferred
- □ bone marrow biopsy
- peripheral blood film sometimes shows lymphoma cells

### Work-Up

- normocytic normochromic anemia
- autoimmune hemolytic anemia
- advanced disease: thrombocytopenia, neutropenia, and leukoerythroblastic anemia
- □ biochemistry
  - increase in uric acid
  - abnormal LFTs in liver metastases
  - elevated LDH (rapidly progressing disease and poor prognostic factor)
- □ chest x-ray + CT for thoracic involvement
- □ CT for abdominal and pelvic involvement

#### **Revised European American lymphoma (REAL) Classification** for Subtypes of NHL

several classification systems exist and may be used at different centres

- 1. plasma cell disorders
- 2. Hodgkin's lymphoma
- 3. indolent lymphoma/leukemia
  - good prognosis: median survival 10 years
  - not curable if stage III/IV
  - 8 subtypes of NHL
- 4. aggressive lymphoma/leukemia
  - shorter natural history
  - 30-60% cured with intensive combination chemotherapy
  - 5 year survival 50-60%
  - 2 main subtypes of NHL

### **Management of NHL**

localized disease (e.g. GI, brain, bone, head and neck)
 surgery (if applicable)

- radiotherapy to primary site and adjacent nodal areas
- adjuvant chemotherapy
- indolent lymphoma
  - watchful waiting
  - radiation therapy
  - chemotherapy
- □ aggressive lymphoma
  - combination chemotherapy
  - aggressive consolidation with marrow or stem cell support

### **NHL Complications**

- hypersplenism
- □ infection
- autoimmune hemolytic anemia and thrombocytopenia
- vascular obstruction (from enlarged nodes)
- Division Note: never give live vaccines e.g. MMR and oral polio

### **Indicators of Poor Prognosis**

- $\Box$  > 60 years old
- poor response to therapy
- □ multiple nodal regions
- elevated LDH
- $\Box$  > 5cm nodes
- previous history of low grade disease or AIDS

# MALIGNANT CLONAL PROLIFERATIONS OF B CELLS

# **CHRONIC LYMPHOCYTIC LEUKEMIA (CLL)**

- indolent disease characterized by the clonal malignancy of poorly functioning B cells
   accumulation of neoplastic lymphocytes in blood, bone marrow, lymph nodes and spleen
- most common leukemia in western world
- mainly older patients
- up to 60% asymptomatic
- 9 vear median survival, but varies greatly

### Investigations

- $\Box$  absolute lymphocytosis > 5.0 x 10<sup>9</sup>/L (usually > 10.0 x 10<sup>9</sup>/L)
- Ivmphocytes small and mature
- smudge cells (see Colour Atlas H12)
   diffuse or focal infiltration of marrow by lymphocytes

### Complications

- bone marrow failure
- bulky lymphadenopathy
   hypersplenism
- immune hemolytic anemia
- immune thrombocytopenia
- hypogammaglobinemia
- monoclonal gammopathy (often IgM)
- hyperuricemia with treatment
- Transformation to histiocytic lymphoma

### Management

the gentlest treatment that will control symptoms

- observation if early, stable, asymptomatic
  - intermittent chlorambucil
  - corticosteroids
  - radiotherapy
  - chemotherapy

no cure

## PLASMA CELL MYELOMA (MULTIPLE MYELOMA)

- Immonoclonal malignancy of plasma cells engaged in the production of a specific protein (paraprotein) characterized by replacement of bone marrow and bone destruction
- incidence: 3 per 100 000
- increasing frequency with age
- Let the protein produced is monoclonal i.e. one class of heavy chains and one type of light chains ("M" protein)
- light chains only: 15% (light chain disease)
   IgD (1%) and IgE are rare

### **Clinical Features**

- □ onset between 40-70 years
- bone pain, tenderness, deformity
- weakness, fatigue (due to anemia)
- weight loss, night sweats with advanced disease
- abnormal bleeding (epistaxis, purpura)
- infection eg. pneumococcal diseases
- renal failure
- on exam: pallor, bone deformity, pathologic fractures, bone tenderness, hepato/splenomegaly, petechiae and purpura

- Laboratory Features
  peripheral blood film (see Colour Atlas H14)
  - rouleaux
  - rare plasma cells
  - normocvtic anemia, thrombocvtopenia, leukopenia
- □ bone marrow
  - focal or diffuse increase in plasma cells (see Colour Atlas H9)
  - primitive plasma cells
- biochemistry
  - hypercalcemia (N/V, apathy, weakness, polydipsia, polyuria)
  - increased creatinine
  - increased ESR
- narrow anion gap (myeloma protein is a cation)
   monoclonal protein on serum protein electrophoresis
   heavy chain and light chain types identified by serum immunoelectrophoresis
- decreased normal immunoglobulins
- urine electrophoresis (Bence-Jones protein, a light chain dimer)

# MALIGNANT CLONAL PROLIFERATIONS OF B CELLS ... CONT.

### Diagnosis

bone pain, anemia, increased ESR or increased rouleaux suggests myeloma

- classic diagnostic triad: must show increased numbers of atypical immature plasma cells
  - 1. greater than 10% abnormal plasma cells in bone marrow
  - 2. lytic bone lesions
  - 3. monoclonal protein spike in serum or urine

### Complications

bone abnormalities

- osteoporosis, pathological fractures common due to
- osteoclastic activating factor and PTHrp lytic lesions are classical (skull, spine, proximal long bones, ribs)
- osteoclast activating factor (hypercalcemia, normal ALP)
- □ renal failure secondary to
  - myeloma kidney (intratubular deposition of light chains)
  - hypercalcemic nephropathy
  - pyelonephritis
  - amyloidosis from chronic inflammation
  - obstructive uropathy
  - renal infiltration by plasma cells
  - hyperuricemia
  - hyperviscosity compromising renal blood flow

- recurrent bacterial infections
   anemia
   hyperviscosity syndrome (caused by M protein)
- amyloidosis (CHF, nephrotic syndrome, joint pain, carpal tunnel syndrome)
- $\overline{\Box}$ transformation to acute leukemia

### Management

- melphalan, cyclophosphamide or other alkylating agents
   corticosteroids

- radiotherapy to local painful lesions
   bisphosphonates
   follow serum or urine M protein as indicator of response
- arly identification and treatment of complications
- L treatment of renal failure
  - hydration
  - corticosteroids
  - plasmapheresis
- autologous stem cell transplant
- thalidomide

### Prognosis

□ median survival 24-30 months

### **LIGHT CHAIN DISEASE**

- □ plasma cells produce only light chains
- Ō 15% of patients with myeloma
- diagnosis
  - urine immunoelectrophoresis
  - serum studies often non-diagnostic as light chains can pass through glomerulus
- □ renal failure a MAJOR problem
- prognosis: survival kappa > lambda light chains

# MONOCLONAL GAMMOPATHY OF UNKNOWN SIGNIFICANCE (BENIGN MONOCLONAL GAMMOPATHY)

incidence: 0.15% in general population, 3% of people > 70 years of age

- diagnosis
  - exclude myeloma
  - < 10% plasma cells in bone marrow
  - no rise in the M protein with time
- □ 10% of patients develop multiple myeloma each year in the first 3 years

### **MACROGLOBULINEMIA OF WALDENSTROM**

- uncontrollable proliferation of lymphoplasmacytoid cells (a hybrid of
- lymphocytes and plasma cells)
- monoclonal IgM para protein is produced
- symptoms: weakness, fatigue, bleeding (oronasal), recurrent infections, dyspnea, CHF, weight loss, neurological symptoms peripheral neuropathy, cerebral dysfunction) ō
- signs: pallor, splenomegaly, hepatomegaly, lymphadenopathy, retinal lesions

# MALIGNANT CLONAL PROLIFERATIONS OF B CELLS ... CONT.

- bone marrow shows plasmacytoid lymphocytes
   bone lesions usually not present
   cold hemagglutinin disease possible

- normocytic anemia, rouleaux, high ESR if hyperviscosity not present
- watch for hyperviscosity syndrome

# MACROGLOBULINEMIA-HYPERVISCOSITY SYNDROME

### **Clinical Features**

- L hypervolemia causing: CHF, headache, lethargy, dilutional anemia
- CNS symptoms: headache, vertigo, ataxia, stroke
- retina shows venous engorgement and hemorrhages
   bleeding diathesis
- - due to impaired platelet function, absorption of soluble
    - coagulation factors e.g. nasal bleeding, oozing gums
- □ ESR usually very low

### Management

- chlorambucil or melphalan
- □ corticosteroids
- plasmapheresis for hyperviscosity

#### **Table 14. Characteristics of B Cell Malignant Proliferation** CLL Macroglobulinemia Myeloma lymphocyte **Cell Type** plasmacytoid plasma cell lymphocyte Protein IgM if IgM IgG, A, D or E present Lymph Nodes very common common rare Hepatosplenomegaly common common rare **Bone Lesions** rare rare common Hypercalcemia rare rare common **Renal failure** rare rare common Immunoglobulin Autoimmune common infrequent rare Complications

# **BONE MARROW TRANSPLANTATION**

- allows even more intensive therapy for hematologic malignancies
- high doses of chemo +/- whole body radiation
- "marrow rescue"
  - · autologous: from self
  - allogeneic: HLA identical sibling (donor must be < 55 years)</li>
- complications
  - cytopenias especially neutropenia and thrombocytopenia
  - infections especially opportunistic
  - drug toxicity

# **TUMOUR LYSIS SYNDROME**

- I more common in diseases with large tumour burden and high proliferative rate (high grade lymphoma, leukemia)
- metabolic abnormalities
  - hyperuricemia
  - hyperkalemia
  - hyperphosphatemia
  - hypocalcemia
- □ complications

lethal cardiac arrhythmia

acute renal failure

### Management

- prevention
  - aggressive IV hydration
  - alkalinization of the urine
  - allopurinol
  - correction of pre-existing metabolic abnormalities

dialysis

# WBC DISORDERS

# **NEUTROPHILIA**

### Definition

 $\Box$  absolute neutrophil count (ANC) > 7.5 x 10<sup>9</sup>/liter

### Mechanism

- increased mitosis/proliferation e.g. response to chronic infection
   decreased marrow storage pool e.g. acute response to infection
   decreased marginal pool e.g. acute response to infection
   decreased egress from circulating pool e.g. chronic steroids

- **Etiology** acute infections especially bacterial
- □ inflammation

- Inflating action
   metabolic derangement e.g. uremia, acidosis, gout
   acute hemorrhage or hemolysis
   malignant neoplasm and myeloproliferative disorders
- steroid therapy (due to poor migration)

# **LEUKEMOID REACTIONS**

blood findings resembling those seen in certain types of leukemia with immature WBC in the peripheral blood film

- myeloid leukemia mimicked by
  - pneumonia
  - other acute bacterial infections
  - intoxications
  - burns
  - malignant disease
  - severe hemorrhage or hemolysis

Iymphoid leukemia mimics (see <u>Infectious Diseases</u> Chapter)

- pertussis
- **T**B
- infectious mononucleosis
- monocytic leukemia mimics
  - ŤB

# **NEUTROPENIA**

### Definition

ANC < 2.5 x 10<sup>9</sup>/liter

### Mechanisms

- decreased stem cells e.g. aplastic anemia
   decreased mitosis e.g. marrow hypoplasia secondary to alkylating agents
- increased ineffective mitosis eg. megaloblastic anemia
   increased peripheral destruction e.g. hypersplenism

- combinations e.g. lymphoma increased marginal pool or decreased storage pool egress e.g. viremia

# WBC DISORDERS ... CONT.

### Etiology

- overwhelming infection
  - viral: HIV, hepatitis, EBV
  - bacterial: typhoid, miliary TB
- drugs and chemicals
  - examples: ionizing radiation, benzene, chemotherapeutic drugs, occamples, formang receiver, anti-inflammatory drugs
    ocse-dependent predictable e.g. anticonvulsants

  - dose-dependent idiosyncratic e.g. ASA, phenothiazine, indomethacin
    dose-independent hypersensitivity
    antibody-mediated eg. penicillins
- marrow disease
  - low B12/folate
  - bone marrow infiltration (hematologic malignancies > solid tumours)
- aplastic anemia L hereditary: cyclic neutropenia
- hypersplenism

#### **Clinical Features** fever. chills

- infection by opportunistic organisms
- painful ulceration on skin, anus, mouth and throat by opportunistic organisms
- septicemia in later stage

### Diagnosis

- CBC
   bone marrow biopsy to rule out marrow failure

## AGRANULOCYTOSIS

- virtually complete disappearance of granulocytes from the blood and
- granulocyte precursors from the marrow; drugs often implicated
  - abrupt onset of
    - fever, chills and weakness
  - oropharyngeal ulcers
- drug induced (eg. clozapine)
- highly lethal without vigorous treatment

### Management

- discontinue offending drug
   antimicrobial therapy e.g. TMP-SMX, ciprofloxacin, antifungal
   Filgrastim (G-CSF) growth factor that stimulates neutrophil production

# **APPROACH TO SPLENOMEGALY**

# Etiology

- infections
  - subacute bacterial endocarditis, TB, salmonella, EBV, CMV,
  - histoplasmosis, malaria, toxoplasmosis, schistosomiasis, HIV/AIDS
- hematologic disorders
- hemolytic anemia, hemoglobinopathies, Fe deficiency anemia
   congestive splenomegaly, portal hypertension: secondary
   secondary to portal or splenic vein obstruction
  - - secondary to intrahepatic disease
    - secondary to CHF
- □ infiltrative or metabolic diseases
  - lipid storage disease, mucopolysaccharidosis, glycogen storage disease, amyloidosis, tyrosinemia
- immunological
  - SLE, sarcoidosis
- neoplastic
  - leukemia, lymphoma, Hodgkin's disease
- epidermal cvsts
- other
  - serum sickness, Felty's syndrome, osteoperosis

### **Mild Spleen Enlargement**

- 0-4 cm below costal margin
   CHF, SBE, SLE, RA, thalassemia minor, acute malaria, typhoid fever

# WBC DISORDERS ... CONT.

### **Moderate Spleen Enlargement**

 4-8 cm below costal margin
 hepatitis, cirrhosis, lymphomas, infectious mononucleosis, hemolytic anemias, splenic infarct, splenic abscess, amyloidosis, acute leukemias, hemolytic anemias

### **Massive Spleen Enlargement**

 $\square$  > 8 cm below costal margin

Chronic leukemias, lymphoma, myelofibrosis, hairy cell leukemia, leishmaniasis, portal vein obstruction, polycythemia vera (end-stage), primary thrombocythemia, lipid-storage disease, sarcoidosis, thalassemia major

# **BLOOD PRODUCTS AND TRANSFUSIONS**

# **BLOOD GROUPS**

| Table 15. Blood Groups |         |                |  |
|------------------------|---------|----------------|--|
| Group                  | Antigen | Antibody       |  |
| 0                      | н       | anti-A, anti-B |  |
| А                      | А       | anti-B         |  |
| В                      | В       | anti-A         |  |
| A B                    | A and B | nil            |  |

| Table 16. Red Cells |                                              |  |  |
|---------------------|----------------------------------------------|--|--|
| Product             | Indication                                   |  |  |
| Packed Cells        | symptomatic anemia bleeding with hypovolemia |  |  |
| Frozen Red Cells    | rare blood groups<br>multiple alloantibodies |  |  |

group compatible uncrossmatched blood is safer than O-negative uncrossmatched blood - there is no universal donor

# **RED CELLS**

### **Packed Cells**

- stored at 4°C
   transfuse within 35 days of collection, otherwise hyperkalemia due to cell lysis
- L transfuse within 7 days of collection if renal failure or hepatic failure is present to reduce solute load
- each unit will raise hematocrit by about 4% or hemoglobin by 10 gm/L (1 g/dL)

### Selection of Red Cells for Transfusion

- donor blood should be crossmatch compatible (by mixing recipient serum with donor RBC)
- donor blood should be free of irregular blood group antibodies
- Let the donor blood should be the same ABO and Rh group as the recipient

# **PLATELETS**

| Table 17. Platelet Products                                              |                                       |  |  |
|--------------------------------------------------------------------------|---------------------------------------|--|--|
| Product Indication                                                       |                                       |  |  |
| Random Donor (pooled)                                                    | thrombocytopenia with bleeding        |  |  |
| Single Donor Platelets                                                   | or Platelets potential BMT recipients |  |  |
| HLA Matched Platelets refractoriness to pooled or single donor platelets |                                       |  |  |

each unit of random donor platelets should increase the platelet count by approximately 10 x 10<sup>9</sup>/L
 single donor platelets should increase the platelet count by 40-60 x 10<sup>9</sup>/L

□ if an increment in the platelet count is not seen, alloantibodies, bleeding, sepsis or hypersplenism may be present

# **COAGULATION FACTORS**

| Table 18. Coagulation Factor Products |                                                                                      |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Product                               | Indication                                                                           |  |  |
| Fresh Frozen Plasma                   | Depletion of multiple coagulation factors                                            |  |  |
| Cryoprecipitate                       | Factor VIII deficiency<br>Von Willebrand's disease<br>Hypofibrinogenemia<br>Hemate P |  |  |
| Factor VIII Concentrate               | Factor VIII deficiency                                                               |  |  |
| Factor IX Concentrate                 | Factor IX deficiency                                                                 |  |  |

### **Special Considerations**

irradiated blood products
 potential BMT recipients

- immunocompromised patients
   CMV negative blood products
  - - potential transplant recipients
    - neonates

### **GROUP AND RESERVE SERUM**

an alternative to holding crossmatched blood for individuals who may require transfusion

- recipient's ABO and Rh group is determined recipient's serum is tested for the presence of irregular blood group antibodies
- serum is kept frozen

• compatible blood can be issued immediately in an emergency or within 30 minutes electively

# ACUTE COMPLICATIONS OF BLOOD TRANSFUSIONS

### **Febrile Nonhemolytic Transfusion Reactions**

due to antibodies stimulated by previous transfusions or pregnancies against antigens on donor lymphocytes, granulocytes, platelets or to lymphokines that are released with storage of the cells signs and symptoms: chills, fever

- management and prevention
  - stop transfusion
  - acetaminophen
  - steroids
  - filtered blood
  - washed blood

### **Allergic Reactions**

usually due to interaction between donor plasma proteins and recipient IgE antibodies

- $\square$  signs and symptoms: a spectrum from urticaria and generalized itching to wheezing to anaphylaxis Note: anaphylaxis is rare, usually in IgA deficient patients reacting against IgA in donor plasma
- management and prevention
  - antihistamines
  - slow infusion
  - steroids
  - washed blood
  - anaphylaxis may require IV epinephrine and IgA deficient blood components in future
- **Acute Hemolytic Transfusion Reactions**
- most commonly due to incorrect patient identification
   intravascular hemolytic reaction due to complement activation
- □ signs and symptoms
  - muscle pain, back pain
    fever, N/V, chest pain, wheezing

  - dyspnea, tachypnea (acute respiratory distress syndrome)
    feeling of impending doom

  - hemoglobinemia
  - renal failure DIC
  - hypotension and vascular collapse
  - patient under general anesthetic may present with bleeding

# BLOOD PRODUCTS AND TRANSFUSIONS ... CONT.

### □ investigations

- repeat crossmatch and donor and recipient blood groups
- direct antiglobulin test (direct Coombs' test)
- management
  - stop transfusion
  - hydrate aggressively
  - transfuse with compatible blood products

### **Citrate Toxicity**

- □ seen with massive transfusion and with liver disease
- L toxicity secondary to hypocalcemia
- prevented by giving 10 mL of 10% calcium gluconate fo every 2 units of blood

### **Hyperkalemia**

### **Circulatory Overload**

- signs: dyspnea, orthopnea, cynasosis, sudden anxiety, hemoptysis, crackles in lung bases
   with prior CHF and in elderly patients
- I minimize the amount of saline given with the blood

### Hemorrhagic State due to Dilutional Coagulopathy

- with massive transfusion
- packed cells contain no Factor VIII or V or platelets
- Correct with fresh frozen plasma and platelets

### **Bacterial Infections**

- $\Box$  never give blood > 4 hours after a bag has been entered!
- I signs and symptoms: chills, rigors, fever, hypotension, shock, DIC (profound symptoms with Gram negatives)
- imanagement: blood cultures, IV antibiotics, fluids

### **DELAYED COMPLICATIONS IN TRANSFUSIONS**

days to weeks

- viral infection risks
  - HIV < 1:500,000</li>
    HBV < 1:250,000</li>

  - HCV < 1: 10,000

### **Delayed Hemolytic Transfusion Reaction**

I may be delayed up to 5 to 10 days

- extravascular hemolysis due to alloantibodies that are too weak to be
- detected by indirect antiglobulin test or by crossmatch
- may be confused with autoimmune hemolytic anemia
- signs and symptoms: anemia, fever, history of recent transfusion, jaundice, positive direct Coombs' test
   further transfusion should be avoided

### **Iron Overload**

- often with repeated transfusion for long periods of time.
- e.g. beta-thalassemia major
- use of iron chelators after transfusion can reduce the chance of iron overload
- complications include secondary hemochromatosis
  - dilated cardiomyopathy
  - cirrhosis
  - DM, hypothyroidism, delayed growth and puberty

### **Transfusion Associated GVHD**

- transfused T-lymphocytes recognize and react against the "host" (recipient)
- between 4-30 days later
- most patients with this have severely impaired immune systems
- (e.g. Hodgkin's, NHL, acute leukemias)
- signs and symptoms: fever, diarrhea, liver function abnormalities, pancytopenia
- mortality about 90%
- prevention: gamma irradiation of blood components

# **MEDICATIONS COMMONLY USED IN HEMATOLOGY**

| Table 19. Drugs for Anemia |                                                  |                                                                               |                                                                                                                                        |                                                                                                                                                                           |                   |
|----------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Drug                       | Common<br>Formulary                              | Mechanism<br>of Action                                                        | Clinical Uses                                                                                                                          | Common Side<br>Effects                                                                                                                                                    | Contraindications |
| iron                       | iron gluconate<br>iron sulphate<br>iron fumarate | • for synthesis of hemoglobin                                                 | <ul> <li>iron deficiency<br/>anemia<br/>treatment and<br/>prevention</li> <li>pregnancy</li> </ul>                                     | <ul> <li>in children: acute<br/>iron toxicity as</li> <li>necrotizing<br/>enterocolitis</li> <li>shock</li> <li>metabolic<br/>acidosis</li> <li>coma and death</li> </ul> | • iron overload   |
| B12                        | cyanocobalamin<br>hydroxycobalamin               | <ul> <li>synthesis of<br/>folic acid and<br/>DNA</li> </ul>                   | B12 deficiency                                                                                                                         | no significant toxicity                                                                                                                                                   | • N/A             |
| folic acid                 | folic acid                                       | <ul> <li>synthesis of<br/>purines and<br/>thymidylate<br/>thus DNA</li> </ul> | <ul><li> folic acid deficiency</li><li> pregnancy</li></ul>                                                                            | no significant toxicity                                                                                                                                                   | • N/A             |
| erythropoietin             | Еро                                              | • stimulate RBC synthesis                                                     | <ul> <li>renal failure</li> <li>marrow failure</li> <li>myelodysplastic<br/>syndrome</li> <li>autologous<br/>blood donation</li> </ul> | no significant toxicity                                                                                                                                                   | • N/A             |

| Table 20. Chemotherapeutic Agents |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class                             | Example                                                                                                                                                                     | Mechanism of Action                                                                                                                                                                                                                                                                                                                                                                            | Common Toxicity                                                                                                                                                                                                                                                                                                       | Examples of<br>Clinical Use                                                                                                                                                                                                                                         |
| alkylating agent                  | <ul> <li>nitrogen mustard</li> <li>cyclophosphamide</li> <li>nitrosurea</li> <li>busulfan</li> <li>cisplatin</li> </ul>                                                     | <ul> <li>cell cycle non-specific drugs</li> <li>via alkylation of nucleophilic<br/>groups in base pairs</li> <li>leading to cross-linking of<br/>bases or abnormal base-<br/>pairing or DNA breakage</li> </ul>                                                                                                                                                                                | <ul> <li>marrow suppression</li> <li>Gl irritation</li> <li>change in gonadal function</li> <li>nitrogen mustard<br/>(cyclophosphamide):<br/>hemorrhagic cystitis</li> <li>busulfan: adrenal<br/>insufficiency and pulmonary<br/>fibrosis</li> </ul>                                                                  | <ul> <li>cyclophosphamide</li> <li>breast CA</li> <li>small cell lung CA</li> <li>NHL</li> <li>busulfan</li> <li>CML</li> <li>cisplatin</li> <li>advanced ovarian CA</li> <li>testicular CA</li> </ul>                                                              |
| antimetabolites                   | <ul> <li>folic acid antagonist<br/>(methotrexate)</li> <li>purine antagonist<br/>(mercaptopurine)</li> <li>pyrimidine antagonist<br/>(5-FU)</li> <li>hydroxyurea</li> </ul> | <ul> <li>all are cell cycle<br/>specific drugs</li> <li>all inhibit DNA synthesis</li> <li>methotrexate inhibits<br/>synthesis of<br/>tetrahydrofolate</li> <li>mercaptopurine inhibits<br/>purine synthesis</li> <li>5-FU inhibits thymidylate<br/>synthesis</li> <li>hydroxyurea inhibits<br/>nucleotide reductase</li> </ul>                                                                | <ul> <li>marrow suppression</li> <li>oral mucositis</li> <li>nausea and vomiting</li> </ul>                                                                                                                                                                                                                           | <ul> <li>methotrexate</li> <li>breast CA</li> <li>gestational<br/>trophoblastic CA</li> <li>ovarian CA</li> <li>mercaptopurine</li> <li>AML</li> <li>5-FU</li> <li>breast CA</li> <li>GI CA</li> <li>hepatocellular CA</li> <li>hydroxyurea</li> <li>CML</li> </ul> |
| antibiotics                       | <ul> <li>anthracyclines<br/>(doxorubicin)</li> <li>bleomycin</li> <li>mitomycin-C</li> </ul>                                                                                | <ul> <li>anthracycline is cell cycle<br/>non-specific;<br/>intercalates between base-<br/>pairs and thus blocks DNA<br/>and RNA synthesis</li> <li>bleomycin is cell cycle<br/>specific (G2); produces<br/>free radicals leading to DNA<br/>breaks and inhibits DNA<br/>synthesis</li> <li>mitomycin-C is cell cycle<br/>non-specific; metabolized<br/>in liver to alkylating agent</li> </ul> | <ul> <li>anthracyclines</li> <li>marrow suppression</li> <li>severe alopecia</li> <li>cardiomyopathies</li> <li>bleomycin</li> <li>pulmonary fibrosis</li> <li>pneumonitis</li> <li>hypersensitivity</li> <li>mucocutaneous reactions</li> <li>mitomycin-C</li> <li>myelo-suppression</li> <li>nephrotoxic</li> </ul> | <ul> <li>anthracyclines</li> <li>breast CA</li> <li>AML</li> <li>lymphomas</li> <li>bleomycin</li> <li>testicular CA</li> <li>lymphomas</li> <li>mitomycin-C</li> <li>GI malignancies</li> </ul>                                                                    |

| Table 20. Chemotherapeutic Agents (continued) |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class                                         | Example                                                                                                      | Mechanism of Action                                                                                                                                                                                                                                                                                                                                                | Common Toxicity                                                                                                                                                                                                                                                     | Examples of<br>Clinical Use                                                                                                                                                                                                                               |
| alkaloids                                     | <ul> <li>vinblastine</li> <li>vincristine</li> <li>podophyllotoxin<br/>(etoposide)</li> <li>taxol</li> </ul> | <ul> <li>all are cell cycle specific</li> <li>vincristine and vinblastine<br/>inhibit assembly of<br/>microtubules therefore<br/>mitotic spindles and M<br/>phase</li> <li>podophyllotoxin activates<br/>opoisomerase II therefore<br/>DNA breaks down</li> <li>taxol inhibits disassembly of<br/>microtubules therefore cells<br/>are stuck in M phase</li> </ul> | <ul> <li>all have marrow suppression</li> <li>vincristine and vinblastine</li> <li>neurotoxic with areflexia,<br/>peripheral neuritis and<br/>paralytic ileus</li> <li>taxol</li> <li>neurotoxic as above</li> </ul>                                                | <ul> <li>vincristine and vinblastine</li> <li>lymphomas</li> <li>Wilm's tumour</li> <li>podophyllotoxin</li> <li>small cell lung CA</li> <li>prostate CA</li> <li>testicular CA</li> <li>taxol</li> <li>advanced breast CA</li> <li>ovarian CA</li> </ul> |
| hormones                                      | <ul> <li>glucocorticoids</li> <li>tamoxifen</li> <li>flutamide</li> <li>aminoglutethimide</li> </ul>         | <ul> <li>tamoxifen <ul> <li>as a partial E2 antagonist</li> </ul> </li> <li>flutamide: androgen <ul> <li>receptor antagonist</li> <li>aminoglutethimide: <ul> <li>aromatase inhibitor in E2</li> <li>synthesis</li> </ul> </li> </ul></li></ul>                                                                                                                    | <ul> <li>glucocorticoid</li> <li>refer to <u>Endocrinology</u><br/>under Cushing's syndrome</li> <li>tamoxifen</li> <li>menopausal symptoms</li> <li>long term: retinopathy</li> <li>aminoglutethimide</li> <li>menopausal symptoms</li> <li>skin rashes</li> </ul> | <ul> <li>glucocorticoids</li> <li>CML</li> <li>lymphomas</li> <li>tamoxifen</li> <li>breast CA</li> <li>flutamide</li> <li>prostate CA</li> <li>aminoglutethimide</li> <li>metastatic breast CA</li> </ul>                                                |
| others                                        | • carboplatin<br>• mitoxantrone                                                                              | <ul> <li>carboplatin</li> <li>DNA binding</li> <li>mitoxantrone</li> <li>?DNA breaks</li> </ul>                                                                                                                                                                                                                                                                    | <ul> <li>carboplatin</li> <li>myelo-suppression</li> <li>nausea, vomiting</li> <li>nephrotoxicity</li> <li>mitoxantrone</li> <li>cardiotoxicity</li> <li>alopecia</li> </ul>                                                                                        | <ul> <li>carboplatin</li> <li>ovarian CA</li> <li>mitoxantrone</li> <li>AML</li> <li>NHL</li> <li>breast CA</li> <li>ovarian CA</li> <li>lung CA</li> </ul>                                                                                               |

# REFERENCES

Armitage J.O. Treatment of Non-Hodgkin's lymphoma. 1993. N Engl J Med. 328: 1023-1030.

Bataiile R, Harousseua J. Multiple myeloma. 1997. N Engl J Med. 336:1657-64.

Castellone DD. Evaluation of Bleeding Disorders. In Saunders Manual of Clinical Laboratory Science. Craig Lehman ED. WB Saunders CO, Philadelphia, PA, 1998.

Cohen K, Scadden D.T. Non-Hodgkin's lymphoma: pathogenesis, clinical presentation, and treatment. 2001. Cancer Treat Res. 104:201-03.

Heaney M.L., Golde D.W. Myelodysplasia. 1999. N Engl J Med. 340:1649-60.

http://cancernet.nci.nih.gov

Lowenberg B. Downing J.R., Burnett A. Acute myeloid leukemia. 1999. N Engl J Med. 341:1051-62.

Mackie IJ, and Bull HA. Normal haemostasis and it regulation. Blood Rev 3:237, 1989.

Mechanisms of severe transfusion reactions. Transfus Clin Biol. 2001 Jun;8(3):278-81.

Pui C., Evans W.E. Acute lymphoblastic leukemia. 1998. N Engl J Med. 339:605-15.

Rozman C., Montserrat E. Chronic lymphocytic leukemia. 1995. N Engl J Med. 333:1052-57.

Sawyers C. Chronic myeloid leukemia. N Engl J Med. 1999. 340:1330-40.

The Merck Manual; Section 11, Chapter 133: platelet disorders.