Inflammation II Outcomes of inflammation with clinical examples

Jennet M Harvey

Acute Inflammation: Sequelae

RESOLUTION (see Acute Inflammation 1 lecture)

SUPPURATION

+/- abscess formation +/- discharge of pus

CHRONIC INFLAMMATION

ORGANISATION AND REPAIR

FIBROSIS

SUPPURATION

Definitions Suppuration: the formation of pus.

Pus: an accumulation of dead and living neutrophils, dead and living bacteria (when inflammation caused by **pyogenic bacteria**), protein (especially fibrin) and other particulate matter (eg cell fragments etc)

Abcess: a pus-filled cavity

Empyema: an accumulation of pus in a naturally occurring body cavity

This type of exudate if referred to as **'suppurative'** or **'purulent'**

Suppurative meningitis Note creamy yellow exudate around vessels in subarachnoid space Micro: Exudate predominantly neutrophils, fibrin, bacteria

Evolution of an abscess

Starts as an acute **inflammatory exudate with many neutrophils**. Proteins (mainly fibrin), bacteria and polymorphs aggregate to form a mass

Tissue death (necrosis) ensues

New capillaries and fibroblasts develop at edge of accumulated material = 'granulation tissue' (process of organisation)

Fibroblasts start to lay down scar tissue (collagen)

Pus resorbed (if small amount) or can burst onto ('point') to external surface (**sinus**) or adjacent body cavity (**fistula**) and be discharged in this way

Collagen deposition proceeds to formation of mature scar

Brain abscess Pus filled cavity with peripheral organisation

Wall of abscess Note: suppurative exudate and surrounding organisation

EXAMPLES of ACUTE INFLAMMATORY REACTION IN THE LUNG caused by PYOGENIC BACTERIA

(Bacterial Pneumonia)

- Lobar pneumonia
- Bronchopneumonia

LOBAR PNEUMONIA S. Pneumonide

Note consolidation (hepatisation) of lower lobe

Соругіght 2005 - School of Surgery & Pathology, Тевм4002¹³ The University of Western Australia

Copyright 2005 - School of Surgery & Pathology, The University of Western Australia

Consolidation of entire lobe

HETRIC 1

2

Lobar pneumonia - often caused by *Streptococcus pneumoniae*. Alveolar spaces filled with exudate - neutrophils, fibrin, dead bacteria. (Referred to as consolidation or hepatisation)

Outcomes of pneumonia

- Resolution
- Abscess formation
- Empyema
- Fibrosis and scarring
- Septicaemia
- Death

Bronchopneumonia

0 0

I- CM

<u>Patchy</u> distribution of consolidation, related to bronchi

Abscess formation complicating pneumonia

https://healthed.hms.uwa.edu.au/pelc/search.php

CHRONIC INFLAMMATION

Description:

- Inflammation enduring longer than acute inflammation
- May be primary but often results from acute inflammation when causative agent cannot be removed
- Polymorphs (neutrophils) largely replaced by lymphocytes, plasma cells (and macrophages)
- Macrophages often fuse to form giant cells
- Often proliferation of vascular endothelium and fibroblasts esp at periphery (= **organisation**)
- Fibrosis

Lung – chronic inflammation Note lymphocytic aggregate (*), interstitial fibrosis (long arrows), Type 2 pneumocytes (blunt arrows)

Example of chronic inflammatory reaction

CHRONIC PEPTIC ULCER Chronic ulcer occurring in an area of acid pepsin digestion Commonly stomach duodenum oesophagus Often associated with *Helicobacter pylori* infection

Chronic peptic ulcer of stomach (*)

CHRONIC PEPTIC ULCER

OUTCOMES OF CHRONIC PEPTIC ULCER

- Resolution rare without appropriate therapy
- Haemorrhage
- Fibrosis (± stenosis)
- Perforation
- Penetration (± fistula formation)
- Malignant transformation very rare

Chronic peptic ulcer complications *Perforation (left) Haemorrhage (right)*

80 90 100 10 120 130 140 150

\$76/4480

0 10 20 30 40 50 60 70

UNIVERSITY OF W.A., DEPT. OF PATHOLOGY.

Example of chronic inflammatory disease

Tuberculosis

Mycobacterium tuberculosis

Tuberculosis

Tuberculous meningitis - above Tuberculosis of spine (Pott's disease) - right

Tuberculosis Often associated with *'caseous' necrosis*

LUNG Caseous tuberculosis and tuberculous bronchopneumonia

Tuberculosis:

Often associated with *granulomatous inflammation* Note epithelioid macrophages and giant cells

Outcomes of inflammation Healing and repair

Resolution Repair

- Removal of exudate
- Regeneration of tissue if possible
- Complete return to normal

- Occurs when resolution impossible (severe, ongoing damage, or tissue cannot regenerate)
- Involves formation of granulation tissue (organisation)
- Maturation of granulation tissue to scar tissue (fibrosis)

Organisation

Definition

- The growth of new capillaries and fibroblasts into the damaged tissue together with migration of macrophages. Macrophages remove debris, fibroblasts lay down collagen.
- New capillaries and fibroblasts = 'granulation tissue' which matures to form fibrous tissue (collagen).
- Often occurs when exudation or damage is excessive and cannot be removed
- Is the process involved in repair (healing) of tissue (when resolution is not possible)

Example of healing Healing of a skin wound

Healing of a skin wound

Healing by primary intention

- Occurs in clean incised wounds with apposed edges (eg surgical wounds)
- Results in minimal scarring
- Occurs in shorter time (mainly healed in a week or two – stitches can be removed)
- Strengthening, devascularisation continues longer

Healing by secondary intention

- Occurs in open wounds (loss of tissue, necrosis or infection)
- Often results in significant scarring (fibrosis)
- Process may continue for months or years

Healing by primary intention

Immediate: small cavity fills with blood and fibrin

2-3 hours: minor inflammation
2-3 days: macrophage, fibroblast activity, new vessel formation (ie minimal granulation tissue)
10-14 days: re-epithelialisation complete, weak fibrous union
Weeks: good fibrous union continues strengthening for months to years.

Devascularisation. Minimal scarring

Healing by secondary intention

Immediate: large cavity fills with blood and fibrin. Acute inflammation begins. Days: epithelium begins to regenerate to cover lesion. Overlying exudate = scab. Contraction of wound New capillary loops form, bring macrophages, neutrophils (prominent granulation tissue). Fibroblasts proliferate Weeks-months: epithelium restored, collagen bundles thickened. Often extensive scarring

Granulation tissue (New blood vessels and fibroblastic proliferation) Granulation tissue (top) maturing to Fibroblastic tissue (below)

Mature scar tissue (collagen)

FIBROSIS

End result of organisation in wound healing and chronic inflammation

The process:

- Fibrocytes stimulated by polypeptides from surrounding damaged cells
- Become active fibroblasts. Commence protein synthesis
- Secretion of ground substance including fibrinonectins
- Secretion of procollagen
- Condensation to fine reticulin fibres
- Further condensation to mature collagen fibres
- Binding and weaving to form scar tissue
- Fibroblasts revert to fibrocytes

Factors adversely affecting wound healing Local

Poor blood supply

Infection

Excessive movement or irritation

Foreign material

General

Deficiency of Vitamin C, essential amino acids, zinc Excess adrenal corticosteroids Intercurrent debilitating chronic disease

COMPLICATIONS OF WOUND HEALING

- Infection
- Failure to heal
- Breakdown of wound
- Scarring/Stricture
- Keloid formation
- Pseudoepitheliomatous hyperplasia
- Malignancy

Excessive epithelial proliferation (pseudoepitheliomatous hyperplasia)

Complication of wound healing: excess collagen formation (keloid)

