

Kenya Medical Training College **Department of Clinical Medicine** Year Two Semester One Scatter Diagram and Regression Analysis: Worked Examples 3rd December 2020

Willis J. Opalla

Learning Objective

 To apply the knowledge on scatter diagrams and regression analysis in calculations and make inferences on relationship between various variables.

Learning Outcomes

- By the end of this session, you should be able to
 - 1. Explain the concepts of scatter diagrams and regression analysis.
 - 2. Define the regression coefficient
 - 3. Construct a scatter diagram and integrate its use with other appropriate measures of relationship.
 - 4. Apply the regression equations in statistical analysis for relationship between independent and dependent variables.

Scatter Diagram Method

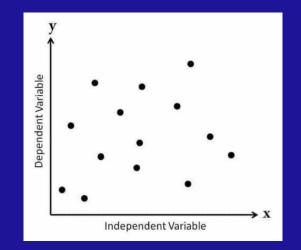
- Scatter Diagrams are convenient mathematical tools to study the correlation between two random variables.
- They are a sheet of paper upon which the data points corresponding to the variables of interest, are scattered.
- The association between the two variables is determined by the pattern that the data points form on the sheet of paper.
- This can further be coupled with a suitable correlation analysis technique.

Scatter Diagram Method

Application

- A quick way of confirming a hypothesis that two variables are correlated.
- Provides a graphical representation of the strength of the relationship between two variables.
- It also helps in understanding cause and effect relationship to evaluate whether manipulation of independent variable (cause) is producing the change in dependent variable (effect).

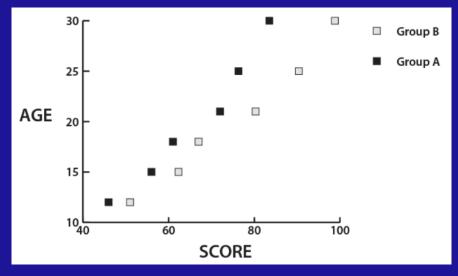
Construction of a Scatter Diagram
Step 1: Draw a line "L", with the horizontal part of "L" as x axis and vertical part as y axis.



Step 2: Make the scale units at even multiples such as 10,20,30,40 etc so as to have an even scale system.

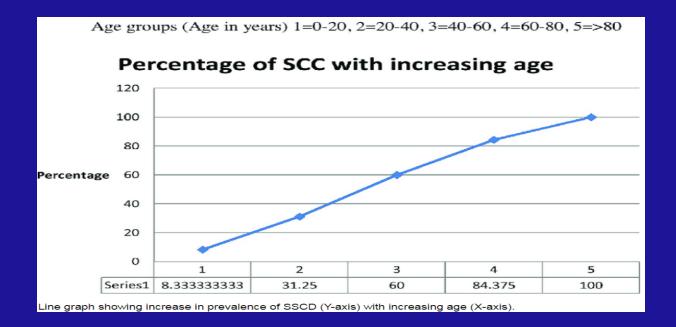
Construction of a Scatter Diagram

- Step 3: Place the independent (cause) variable on horizontal axis and dependent (effect) variable on vertical axis.
- Plot the data points at the intersection of x and y axis.



Scatter Diagram Method

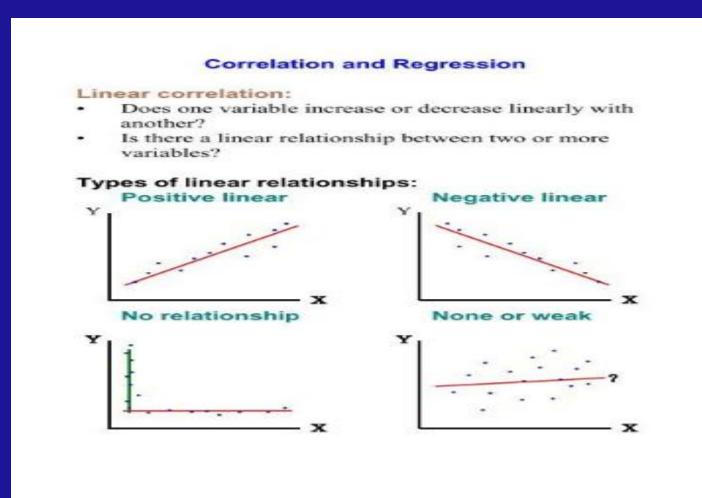
- The plots on the graphs generally look scattered, hence the name scatter plot.
- Interpret the data and find the relationship.



Interpretation of Scatter Diagram

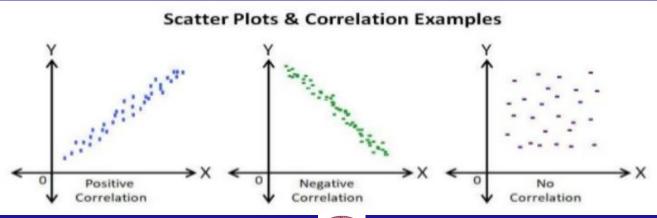
- It suggests the degree and the direction of the correlation.
- The greater the scatter of plotted points on the chart the lesser is the relationship.
- The closer the points to the diagonal line from the left corner to the upper right corner, the perfectly positive the correlation (r = +1).
- If all the plots are on the diagonal line from upper left corner to the lower right corner, then the correlation is perfectly negative. (r = -1)

Interpretation of Scatter Diagram



Interpretation of Scatter Diagram

- If the points are widely scattered on the graph, then it indicates very little relationship, i.e. a weak positive or weak negative relationship.
- If the plotted points lie on the diagram in a disorganized manner, then it shows no correlation.



Merits and Demerits of Scatter Diagram

Merits

- It is a simple and non-mathematical method to study correlation.
- Easily understood and can enable a rough idea to be formed quickly.
- Is not influenced by the extreme values of x and y.
- Demerits
 - Cannot determine the exact degree of correlation.
 - It is not mathematical, hence less reliable.

- Regression analysis is a reliable method of identifying the variables that have an impact on a topic of interest.
- Dependent Variable:
 - This is the main factor that the study seeks to understand or predict.
- Independent Variables:
 - These are the factors that are hypothesized to have an influence on the dependent variable of the study.

Regression

- Is done by deriving a suitable equation on the basis of available bivariate data.
- The equation is called the Regression equation and its geometrical representation is called the Regression curve.
- The regression equation requires a Regression coefficient, b/b¹.

Regression Analysis

 Regression analysis seeks to determine the nature of relationship between the variables,

i.e. to study the functional relationship between the variables and thereby provide a mechanism for prediction.

- Regression analysis describes the relationship between dependent variable (y) and independent variable (x).
- This way, unknown values of 'y' can be estimated for the known values of 'x' through the mathematical equation, y = a+bx.

Properties of Regression Coefficient

- The regression coefficient is denoted by b.
- Between two variables (x and y), two values of regression coefficient can be obtained:
 - One is obtained when x considered as the independent and y as dependent variable and the other when it is reversed.
 - The regression coefficient of y on x is represented as b_{yx} and that of x on y as b_{xy} .
- The *correlation coefficient* is the square root of the products of two regression coefficients $(b = b_{yx} \text{ and } b^1 = b_{xy}).$

Regression Equations

- Two equations:
 - 1. Regression Equation of y on x.
 - 2. Regression equation of x on y.

Regression Equation of y on x

■ y = a + bx

where,

- y is the dependent variable,
- x, the independent variable.
- a and b are constants.
- It is also to be noted that
 - $b = b_{yx}$ (regression coefficient of y on x) •

$$\mathbf{b} = \underline{\Sigma}\mathbf{x}\mathbf{y} - \mathbf{n}\overline{\mathbf{x}}\ \overline{\mathbf{y}}$$

$$\Sigma x^2 - nx^2$$

Regression Equation of x on y • $x = a^1 + b^1 x$

where,

- x is the dependent variable,
- y, the independent variable.
- a¹ and b¹ are constants.
- It is also to be noted that

 $b^{1} = b_{xy} (\text{regression coefficient of y on x}) \bullet$ $b^{1} = \sum xy - \overline{nx} \overline{y}$ $\overline{\sum y^{2} - ny^{2}}$ $a = \overline{x} - b\overline{y}$

Types of Regression

- Simple linear regression:
 - It is the relationship between a scalar response or dependent variable and one or more independent variables.
- Multiple linear regression:
 - More than one explanatory variable.
- Multivariate linear regression:
 - Multiple correlated dependent variables are predicted, rather than a single scalar variable.

Types of Regression

- Positive regression:
 - A positive sign indicates that as the predictor variable increases, the response variable also increases.
- Negative regression:
 - A negative sign indicates that as the predictor variable increases, the response variable decreases.

Types of Regression

- Linear and nonlinear Regression:
 - A model is linear when each term is either a constant or the product of a parameter and a predictor variable.
 - It is non linear if the equation does not meet the linear criteria.

Regression Analysis

Worked Example

Fit a regression equation of BP on age based on the following data and estimate the probable BP for a 55 years old.

n = 5
$\overline{\mathbf{X}} = \Sigma \mathbf{x} / \mathbf{n}$

Age (yrs)	30	40	50	60	70
BP (mmHg)	120	130	140	150	160

- = 250/5 = 50 $\overline{Y} = \sum y/n = 700/5 = 140$
- The regression equation to be fitted is y = a+bx where y is BP and x is the age.

Regression Equation of y on x

Worked Example

Find b and a using the given formula.

 $b = \frac{\sum xy - n\overline{x} \, \overline{y}}{\sum x^2 - nx^2} \text{ and }$ $a = \overline{y} - b\overline{x}$

x	У	ху	x ²
30	120	3600	900
40	130	5200	1600
50	140	7000	2500
60	150	9000	3600
70	160	11200	4900
Σx=250	Σy=700	Σxy=36000	$\Sigma x^2 = 13500$

Regression Equation of y on x

Substituting,

b = 36000 - 5x50x140

 $13500 - 5x(50)^2$

- =(36000 35000)/(13500 12500)
- = 1000/1000 = 1
- $a = \overline{y} b\overline{x}$
 - $= 140 1 \ge 50$

= 90

So the fitted regression equation is y = a+bx. BP = 90 + 1 x 55 = 90 + 55 = 145mmHg

Regression Analysis

• Example 2

Fit the two line of regression equation for the following data.

X	10	20	30	40	50
Y	30	50	70	90	110

n = 5 $\overline{X} = \sum x/n = 150/5 = 30$ $\overline{Y} = \sum y/n = 350/5 = 70$

 The regression equation to be fitted is y = a+bx and x = a¹ + b¹ y.

Regression Equation of y on x• Find b1 and a1 using the given formula. $b^1 = \sum xy - n\overline{x} \overline{y}$ $\sum x^2 - n\overline{x}^2$ $a^1 = \overline{y} - b\overline{x}$

X	У	ху	x ²	\mathbf{y}^2
10	30	300	100	900
20	50	1000	400	2500
30	70	2100	900	4900
40	90	3600	1600	8100
50	110	5500	2500	12100
∑x=150	∑y=350	∑xy=12500	$\sum x^2 = 5500$	$\sum x^2 = 28500$

Regression Equation of y on x Substituting, b = 12500 - 5x30x70 $5500 - 5x(30)^2$ =(12500 - 10500)/(5500 - 4500)= 2000/1000 = 2 $a = \overline{y} - b\overline{x}$ $= 70 - 2 \times 30$ = 70 - 60 = 10So the fitted regression equation is y = 10 + 2x.

Regression Equation of x on y

- Worked Example
 - Find b¹ and a¹ and a using the formula.

•
$$b^1 = \frac{\Sigma xy - n\overline{x} \ \overline{y}}{\Sigma y^2 - ny^2}$$

 $a^1 = \overline{x} - b\overline{y}$

Regression Equation of x on y

Substituting,

 $b^1 = 12500 - 5x30x70$ $28500 - 5x(70)^2$ $b^1 = (2500 - 10500)/(28500 - 24500)$ $b^1 = 2000/4000 = 0.5$ $a^1 = \overline{x} - b1\overline{y}$ $= 30 - 0.5 \times 70$ = 30 - 35 = -5

• So the fitted regression equation is x = -5 + 0.5y.

Properties

- The square root of the products of two regression coefficients is correlation coefficient.
- In the given examples,
 - $b = b_{yx}$ = 2 $r = \sqrt{2} \times 0.5$ = 1 $b^{1} = b^{1}_{xy}$ = 0.5

Summary

- The scatter diagram informs on the degree and direction of the correlation:
- The greater the scatter of plotted points on the chart the lesser the relationship.
- The closer the points to the diagonal line from the left corner to the upper right corner, the perfectly positive the correlation.

References

- Joseph, J. K. (n.d) *Measures of Relationship*, [Online] Available: https://www.slideshare.net/JohnykuttyJoseph/ measures-of-relationship, (Retrieved 26.11.2020)
- Kothari, C. R., (2004) Research Methodology, Methods and Techniques, 2nd ed., New Age International Publishers, New Delhi.

