

Kenya Medical Training College Department of Clinical Medicine Year Two Semester One Spearman's Correlation Coefficient: Worked Examples 26th November 2020 Willis J. Opalla

Learning Objective

 To apply Spearman's Correlation Coefficient in determining the relationship between independent and dependent variables.

Learning Outcomes

- By the end of this session, you should be able to
 - 1. Explain the Spearman's Correlation Coefficient formula.
 - 2. Use Spearman's Correlation Coefficient to make statistical inferences on relationship between independent and dependent variables.

- For finding correlation between two variables by taking their ranks.
 - Useful for qualitative data.
 - Can be used when the actual magnitude of characteristics under consideration is not known, but relative position or rank of the magnitude is known.
 - Is the nonparametric version of the Pearson correlation coefficient.
 - The data must be ordinal, interval or ratio with ranks.

- For summarizing the strength and direction (negative or positive) of a relationship between two variables.
- Will always be between +1 and -1, where:
- +1 = a perfect positive correlation between ranks.
- -1 = a perfect negative correlation between ranks.
- 0 = no correlation between ranks.

- It is denoted by "rho" (p).
- There are two cases for calculating rank correlation.
- Case 1.
 - No tie of allotted rank
- Case 2.
 - There is a tie for two or more values or ranks in either "x" or "y" or in both "x" and "y".

Case 1: No Tie of Allotted Rank

- In this, none of the values/ranks of x and y are repeated.
- "p" can be calculated using the formula:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

d = difference in the ranks of data set of 'x'
and 'y'.
i.e. d = Rx - Ry (i.e. d = rank x - rank y)

 The formula for the Spearman rank correlation coefficient when there are no tied ranks is:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

• Example Question:

Pathology and physiology scores for nine students are:

- Pathology: 35, 23, 47, 17, 10, 43, 9, 6, 28
- Physiology: 30, 33, 45, 23, 8, 49, 12, 4, 31
- Compute the student's ranks in the 2 subjects and compute the Spearman's rank correlation.

- Step 1: Find the ranks for each subject.
 - To rank manually by hand, the scores are ordered from the largest to smallest then assigned the rank 1 to the highest score, 2 to the next highest etc:

Pathology	Rank	Physiology	Rank
35	3	30	5
23	5	33	3
47	1	45	2
17	6	23	6
10	7	8	8
43	2	49	1
9	8	12	7
6	9	4	9
28	4	31	4

- Step 2: Add a third column, d.
 - The d is the difference between ranks.
 - e.g., the first student's pathology rank is 3 and physiology rank is 5, so the difference is 3 points.
- In the 6th column, square the values of d.

Pathology	Rank	Physiology	Rank	d	d ²
35	3	30	5	2	4
23	5	33	3	2	4
47	1	45	2	1	1
17	6	23	6	0	0
10	7	8	8	1	1
43	2	49	1	1	1
9	8	12	7	1	1
6	9	4	9	0	0
28	4	31	4	0	0

- Step 3: Add up all values of d².
 4+4+1+0+1+1+1+0+0=12.
 - This will be required for the factor $6\Sigma d^2$ of the formula.
- Step 4: Insert the values into the formula. These ranks are not tied (i.e. not similar) so the first formula is applied:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Substituting:

$$p = 1 - (6x12)/[9(81-1)]$$

= 1 - 72/720
= 1 - 0.1
= 0.9

The Spearman's Correlation for this set of data is 0.9, hence implying a strong positive correlation.

Worked Example

- Calculate the rank correlation of the marks for five students in Microbiology and Immunology.
 - Only the ranks should be arranged in ascending or descending order.
 - One data pair belongs to one student.
 - Prepare a table to calculate Σd² Microbiology 85 81 77 68 53 Immunology 78 70 72 62 67

Microbiology	Rank	Immunology	Rank	d	d ²
85	1	78	1	0	0
81	2	70	3	1	1
77	3	72	2	1	1
68	4	62	5	1	1
53	5	67	4	1	1

• Substituting in the equation: p = 1 - 6x4 / 5 (25-1) = 1 - 24/120= 0.8

The marks of the two subjects are strongly positively correlated.

Exercise

- Calculate the Spearman's correlation coefficient for the temperatures (°C) of two patients, Adan and Kadzo on different days in one week.
 - Adan
 20 28 25 23 22 30 31

 Kadzo
 15 26 17 19 21 24 27
- First step:

Feed the data into a 6 x 8 table.

Adan Rank Kadzo Rank d d²

Case 2: Tie of Allotted Rank

- i.e. more than one rank is present in either x or y or both x and y.
- "p" is calculated using the Spearman's formula and then adding CF, the Correlation Factor.

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} + CF.$$

- CF has to be calculated for each repeated ranks and then added.
- The CF is calculated using $CF = m (m^2 1)/12$, where m is the number of times the data repeats.
- d = difference in the ranks of data set of 'x' and 'y' (d = Rx - Ry).

Case 2: Tied Ranks

- Calculate the rank correlation of the following marks obtained by eight students in Medicine and Obstetrics.
 - Medicine 60 81 72 68 53 75 85 68
 - Obstetrics 78 70 72 62 67 70 70 61
 - Here Medicine (x) the value 68 is repeated twice and in Obstetrics (y) the value 70 is repeated thrice.
 - In the first series CF = 2x(4-1)/12 = 0.5
 - In the second series CF = 3x(9-1)/12 = 2

Case 2: Tied Ranks

Tabulating:

Medicine	Rank, Rx	Obstetrics	Rank, Ry	d	d ²
60	6	78	1	5	25
81	2	70	3	-1	1
72	4	72	2	2	4
68	5	62	5	0	0
53	7	67	4	3	9
75	3	70	3	0	0
85	1	70	3	-2	4
68	5	61	6	-1	1

•
$$\Sigma d^2 = 44$$

Case 2: Tied Ranks

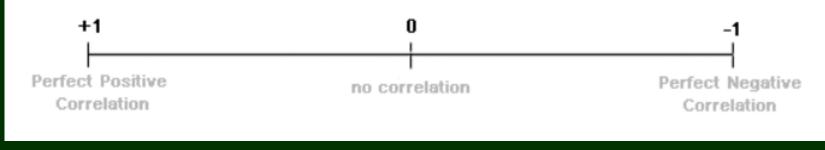
Substituting:

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} + CF$$

$p = 1 - 6x \ 44 + 0.5 + 2 \ / \ 8 \ (64-1)$

- = 1 266.5/504
- = 1 0.53
- = 0.47

• The marks of the two subjects have a positive correlation.


Merits and Demerits of Spearman's **Correlation Coefficient** Merits

- Can be used as a measure of degree of association between qualitative data.
- Is very simple and easily understandable.
- Can be used when the actual data is given or when only the ranks of the data are given.
- Demerits
 - Ranks coefficient for a frequency distribution, i.e., grouped data, can't be calculated.
 - Calculation gets tedious when the number of observations is large.

Meaning of p Value

- The closer p is to +1 or -1, the stronger the likely correlation.
- A perfect positive correlation is +1 and a perfect negative correlation is -1.
- A p value of -0.73 suggests a fairly strong negative relationship, i.e.

Summary

- Spearman's or Rank Correlation Coefficient is the nonparametric version of the Pearson correlation coefficient and is useful for determining the correlation between two variables by taking their ranks.
- Applicable for summarizing the strength and direction of a relationship between two variables in both tied and non-tied ranks.

References

- Glen, S..(2015) Spearman's Rank Correlation (Spearman's Rho): Definition and How to Calculate it, [Online] Available: https://www.statisticshowto.com/spearmanrank-correlation-definition-calculate/(Retrieved 23.11.2020)
- Joseph, J. K. (n.d) *Measures of Relationship*, [Online] Available: https://www.slideshare.net/JohnykuttyJoseph/mea sures-of-relationship, (Retrieved 26.11.2020)

