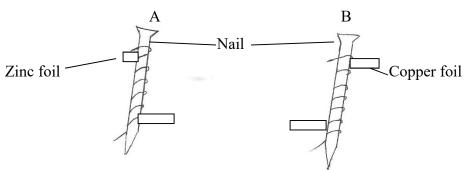


NAME:	INDEX NO:
SCHOOL:	DATE:
	STUDENT'S SIGNATURE:

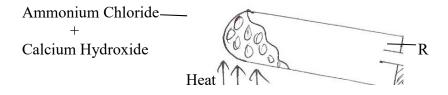
233/1 CHEMISTRY PAPER 1 2020 THEORY 2 HOURS


Instructions to Candidates

- a) Write your name and admission number in the spaces provided.
- b) Answer all the questions in the spaces provided.
- c) Mathematical table and electronic calculator may be used.
- d) All working must be clearly shown where necessary.
- e) Students should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Maximum Score	Candidate's Score
	Maximum Score

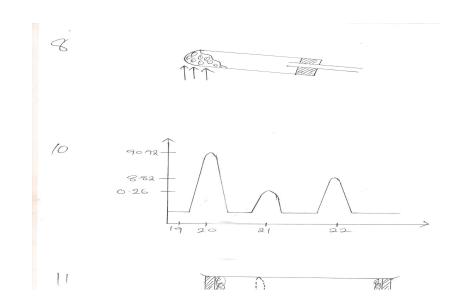

1.	It is advisable to use non-luminous flame of a Bunsen burner for heating instead of flame. Give two reasons why this is so.	the luminous (2 Marks)
2.	Explain why the melting points of metallic elements in a group decrease down the g	group.
		(3 Marks)
		• • • • • • • • • • • • • • • • • • • •
3.	1	s of oxygen
	produced was 0.83g.i) Write the balanced equation for the reaction.	(2 Marks)
	ii) Calculate the percentage of Sodium Nitrate that was converted to Sodium Sodium Nitrate tha	lium Nitrite.
	(Na=23, N=14, O=16).	(2 Marks)
		•••••
4.	The diagram below represents two iron nails with some parts tightly wrapped w	ith Zinc and
	Copper foils respectively.	
	A D	

	Given that Zinc is the most reactive and Copper the least reactive;	
	a) State the observations that would be made at the exposed parts of the nails	A and B after
	being left in the open for a long time.	(2 Marks)
	b) Name the process being illustrated above.	(1 Mark)
5.	Calculate the mass of marble chips that produces 11.2cm ³ of Carbon (IV) Oxide	e at r.t.p when
	reacted with dilute hydrochloric acid.	-
	(Molar gas volume = 24.0dm^3 , C=12, O=16, Ca=40)	(3 Marks)
6.	a) Starting with Calcium Carbonate, describe how a solid sample of Calcium Sulp	nhata can ha
Ο.	prepared.	(3 Marks)
	prepared.	
	b) Give one use of Calcium Sulphate.	(1 Mark)
7.	Give the systematic names of the following: -	
/٠		(1
	i) CH ₃ CH ₂ CH CH CH ₃ Mark)	(1
	CH ₃ CH ₃	
	ii) $CH_3CH = CH CH CH_3$	(1 Mark)
	Br	7

iii)	$H-C \stackrel{\blacksquare \blacksquare}{=} C-CH_2-C \stackrel{\blacksquare \blacksquare}{=} C-CH_3$	(
	Mark)	

- 8. The diagram below represents an incomplete set up for the preparation for a dry sample of gas R.
 - a) Complete the diagram to show how a sample of dry gas R can be collected. (3 Marks)

b)	Write a chemical equation for the reaction that produces gas R.	(1 Mark)


9. Study the information in the table below and answer the questions that follow.

Liquid	Boiling point °C
Propanone	56
Water	100
Ethanoic acid	118

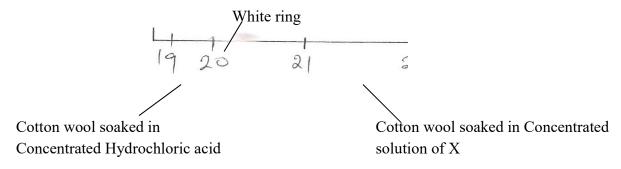
Suggest with an explanation the most suitable method for separating the mixtures.

i)	Propanone and water.	(1 Mark)
ii)	Ethanoic acid and water.	(1 Mark)

10. Analysis of a sample of neon gas in a mass spectrometer gave the following results.

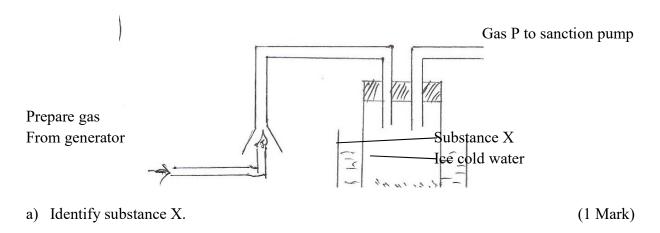
a) Given that the atomic number of neon is 10. Write down the symbols of the isotopes.

.....


(1 ½ Marks)

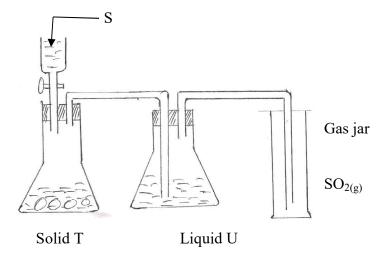
b) Which of the isotope is commonly found? (½ Mark)

.....


c) Calculate the R.A.M. of neon. (2 Marks)

11. Study the diagram below and answer the questions that follow.

a)	Explain why the cotton wools were soaked in the concentrated solutions of acid and X.	hydrochloric (1 Mark)
	Why did the white ring form near the end with hydrochloric acid?	(1 Mark)
c)	Equal volumes of hydrogen chloride and gas X required 30 seconds and respectively to diffuse through a jet of the same size. Calculate the molecular m (H=1, Cl=35.5).	20 seconds nass of gas X (3 Marks)
•••		
•••		
•••		
•••		


12. The diagram below shows the combustion of propane gas.

,	quation for the complete combustion		(1 Mark)
	purpose of ice cold water in the ex		(1 Mark)
d) The pH of s	substance X was found to be less th	an seven (7). Explain th	
			(1 Mark)
•••••			
3 The table below	v has information about elements E	F. G. and H. (Letters n	ot actual eymbols)
Element	Electron arrangement	Atomic radii	Ionic radii
Е	2.2	0.110	0.046
F	2.7	0.071	0.136
G	2.8.1	0.157	0.102
Н	2.8.2	0.136	0.065
b) Identify a n	on-metal. Explain.		(2 Marks)
•••••			•••••
c) Write a che	mical formula for the oxide of E.		(1 Mark)
	lilute Sulphuric acid is made by di		-
in 240cm ³ of so	olution. Calculate the molarity of th	e hydrogen ions in the	solution. (3 Marks)
(S=32, H=1, O=	=12) (L = 6.0×10^{23})		

 	 •

15. The diagram below shows the preparation and collection of Sulphur (IV) Oxide gas.

1)	Name the substance represented by letters.	(3 Marks)
	S:	
	T:	
	U:	
ii)	Write the equation of the reaction taking place between T and liquid S.	(1 Mark)
 iii)	State and explain what would happen if dry red and blue litmus papers were	
	gas jar of the collected sulphur (IV) oxide.	(2 Marks)
		•••••

16. Chlorine gas was bubbled through water for sometimes. The green yellow solution formed was poured into a long glass tube as shown below. Use the set up to answer the questions that follow.

Sun rays

Q

	i)	Which compounds are present in the yellow solution?	(1 Mark)		
	ii)	Name substance Q.	(1 Mark)		
	iii)	Write an ionic equation for formation of Q.	(1 Mark)		
17	. a) St	ate Boyle's law.	(1 Mark)		
	b) At	b) At a temperature of 25°C, a gas occupies a volume of 300 litres and a pressure of 540mmHg. What would be the pressure if the gas at a temperature of 30°C occupies a			
	vo	lume of 600 litres.	(* Marks)		
	•••••				
18	. a) D1 	raw dot and cross diagram to show bonding in carbon (IV) oxide gas.	(2 Marks)		
	b) Ex	xplain why graphite is a better lubricant compared to oil.	(1 Mark)		

- 19. State the most appropriate technique used to obtain:
 - i) Ammonium Chloride from mixture of Ammonium Chloride and Calcium Chloride.

	ii)	Water from salt solution.	
	••••		
	iii)	Kerosene from water – kerosene mixture.	
	•••		
20	. a)	State Gay Lussac's law.	(1 Mark)
	• • • •		
	b)	100cm3 of hydrogen gas was reacted with 150cm3 of chlorine gas.	Calculate the final
		volume of gases of the resultant mixture.	(2 Marks)
	• • • •		
	•••		
	•••		
	•••		
• •	a .		
21	. Stu	idy the set up below and answer the questions that follow.	
		X Y	
		$\mathrm{GBr}_{2(s)}$	
		Heat	
	a)	Identify the electrodes.	(1 Mark)
		X:	
		Y:	
	b)	Write the equation of the reaction at electrode Y.	(1 Mark)
	c)	Why should the experiment be carried out in a fume chamber?	(1 Mark)
	•••	· · · · · · · · · · · · · · · · · · ·	

22.	State two uses of helium gas.	(1 Mark)
23.	Calculate the number of atoms in 4.6g of Sodium. (Na = 23, L = $6.0 ext{ } 10^{23}$).	(1 Mark)
24.	The electron arrangement of ions X^{3+} and Y^{2-} are 2.8 and 2.8.8 respectively.	
	a) Write the electron arrangement of the elements.	(1 Mark)
	X:	
	Y:	
	b) Write down the formula of the compound that would be formed between X and Y	.(1 Mark)