Catabolism of branched chain amino acids

Dr. Atunga Nyachieo

Catabolism of the branched chain amino acids

Branched chain AA are: Isoleucine, Leucine, Valine

- * Essential AA
- Metabolized primarily by the peripheral tissues (muscles) and not In the liver like other amino acids.
- *All three have similar route of catabolism

Amino acids that form succinyl CoA

```
Leucine-Ketogenic aa
```

Metabolism of Leucine

produce: Acetoacetate and

AcetylCoA

Branched chain amino acid degradation

- Degradation of Ile, Leu, and Val use common enzymes for the first three steps
- 1. Transamination to the corresponding α -keto acid
- 2. Oxidative decarboxylation to the corresponding acyl-CoA
- 3. Dehydrogenation by FAD to form a double bond.

First three enzymes

- 1. Branched-chain amino acid aminotransferase
- 2. Branched-chain α -keto acid dehydrogenase (BCKDH)
- 3. Acyl-CoA dehydrogenase

The degradation of the branched-chain amino acids (A) isoleucine, (B) valine, (C) leucine.

First three enzymes:

- Branched-chain amino acid aminotransferase
- 2. Branched-chain α -keto acid dehydrogenase (BCKDH)
- Acyl-CoA dehydrogenase
- 4. Enoyl-CoA hydratase double bond hydration
- β-hydroxyacyl-CoA dehydrogenase- dehydrognation by NAD+
- Acetyl-CoA acetyltransferase thiolytic cleavage
- 7. Enoyl-CoA hydratase double bond hydration
- 8. β-hydroxy-isobutyryl-CoA hydrolase -hydrolysis of CoA
- β-hydroxyisobutyrate dehydrogenase second dehydration
- 10. Methylmalonate semialdehyde dehydrogenase oxidative carboxylation
- 11. β-methylcronyl-CoA carboxylase-carboxylation reaction (biotin)
- 12. β-methylglutaconyl-CoA hydratase-hydration reaction
- 13. HMG-CoA lyase

Transamination

Catalyzed by a single Vitamin B6-requiring enzyme, Branched-chain α -amino acid aminotransferase.

Oxidative decarboxylation

The removal of carboxyl group of the α -keto acids from these three AAs is catalyzed by the same branched-chain α -keto acid dehydrogenase complex.

This enzyme uses thiamine pyrophosphate, lipoic acid, FAD, NAD+, and CoA as cooenzymes).

Dehydrogenase

Oxidation of the products formed in the decarboxylation reaction yields α - β -unsaturated acyl CoA derivatives.

- •The branched chain amino acids initially share in part a common pathway.
- •Branched Chain α -Keto Acid Dehydrogenase (BCKDH) is a multi-subunit complex homologous to Pyruvate Dehydrogenase complex.
- •Genetic deficiency of BCKDH is called **Maple Syrup Urine Disease** (MSUD).
- •High concentrations of branched chain keto acids in urine give it a characteristic odor.

Branched-chain aminoaciduria

Disease also called Maple Syrup Urine Disease (MSUD) (because of the characteristic odor of the urine in affected individuals).

Deficiency in an enzyme, **branched-chain** α **-keto acid dehydrogenase** leads to an accumulation of three branched-chain amino acids and their corresponding branched-chain α -keto acids which are excreted in the urine.

There is only one dehydrogenase enzyme for all three amino acids.

Mental retardation in these cases is extensive.

- •Propionyl-CoA is carboxylated to methylmalonyl-CoA.
- •A racemase yields the L-isomer essential to the subsequent reaction.
- •Methylmalonyl-CoA Mutase catalyzes a molecular rearrangement: the branched C chain of methylmalonyl-CoA is converted to the linear C chain of succinyl-CoA.
- •The carboxyl that is in ester linkage to the thiol of coenzyme A is shifted to an adjacent carbon atom, with opposite shift of a hydrogen atom.

Recall that **coenzyme A** is a large molecule.

Coenzyme B₁₂, a derivative of vitamin B₁₂ (cobalamin), is the prosthetic group of Methylmalonyl-CoA Mutase.

A crystal structure of the enzyme-bound coenzyme B₁₂.

Coenzyme B₁₂ contains a heme-like corrin ring with a cobalt ion coordinated to 4 ring N atoms.

Within the active site, the Co atom of coenzyme B₁₂ has 2 axial ligands:

- methyl C atom of 5'-deoxyadenosine (not shown).
- an enzyme histidine N

When B_{12} is free in solution, a ring N of the dimethylbenzimidazole serves as axial ligand to the cobalt. When B_{12} is enzyme-bound, a His side-chain N substitutes for the dimethylbenzimidazole.

- •Methyl group transfers are also carried out by B₁₂ (cobalamin).
- •Methyl- B_{12} (methylcobalamin), with a methyl axial ligand substituting for the deoxyadenosyl moiety of coenzyme B_{12} , is an intermediate of such transfers.
- •E.g., **B**₁₂ is a prosthetic group of the mammalian enzyme that catalyzes methylation of homocysteine to from **methionine**.

- Vitamin B_{12} is synthesized only by bacteria. Ruminants get B_{12} from bacteria in their digestive system.
 - Humans obtain B_{12} from **meat** or **dairy products**.
- Vitamin B₁₂ bound to the protein gastric intrinsic factor is absorbed by cells in the upper part of the human small intestine via receptor-mediated endocytosis.
- B₁₂ synthesized by bacteria in the large intestine is unavailable.
- Strict vegetarians eventually become deficient in B₁₂
 unless they consume it in pill form.
- Vitamin B₁₂ is transported in the blood bound to the protein transcobalamin, which is recognized by a receptor that mediates uptake into body cells.

Summary of catabolism of Branched Amino acids

