### Aromatic amino acids AND Sulfur containing amino acids

Dr. Atunga Nyachieo

#### I) Catabolic pathways Aromatic amino acids

#### **Aromatic Amino Acids**

Aromatic amino acids **phenylalanine & tyrosine** are catabolized to **fumarate** and **acetoacetate**.

Hydroxylation of **phenylalanine** to form tyrosine involves the reductant **tetrahydrobiopterin**. Biopterin, like folate, has a pteridine ring.

Dihydrobiopterin is reduced to tetrahydrobiopterin by electron transfer from **NADH**.

Thus NADH is secondarily the e<sup>-</sup> donor for conversion of phenylalanine to tyrosine.

## Phe and Tyr are degraded to fumarate and acetoacetate

 The first step in Phe degradation is conversion to Tyr so both amino acids are degraded by the same pathway.

 Total=6 reactions to form fumarate and acetoacetate.

### Amino Acids that enter metabolism as fumarate Phenylalanine and Tyrosine





Hence these two aa are both glucogenic and ketogenic

## Phe and Tyr are degraded to fumarate and acetoacetate

- The first step in Phe degradation is conversion to Tyr so both amino acids are degraded by the same pathway.
- 6 reactions

# Phe and Tyr are degraded to fumarate and acetoacetate in 6 step reactions

- Phenylanalnine hydroxylase
- 2. Aminotransferase
- 3. p-hydroxyphenylpyruvate dioxygenase
- 4. Homogentisate dioxygenase
- 5. Maleylacetoacetate isomerase
- 6. Fumarylacetoacetase



# Phenylalanine hydroxylase has biopterin cofactor

- 1st reaction is a hydroxylation reaction by phenylalanine hydroxylase (PAH), a non-heme-iron containing homotetrameric enzyme.
- Requires O2, Fell, and biopterin a pterin derivative.
- Pterins have a pteridine ring (similar to flavins)
- Folate derivatives (THF) also contain pterin rings.

## Active Tetrahydrobiopterin (BH<sub>4</sub>) must be regenerated



### Active BH<sub>4</sub> must be regenerated





Overall the reaction is considered a mixed function oxidation, because one O atom of  $O_2$  is reduced to water while the other is incorporated into the amino acid product.

Phenylalanine
Hydroxylase includes a
non-heme iron atom at its
active site.

X-ray crystallography has shown the following are **ligands** to the iron atom:

His N, Glu O & water O. (Fe shown in spacefill & ligands in ball & stick).

7,8-dihydrobiopterin His His Phenylalanine Hydroxylase PDB 1DMW

ligands in ball & stick).  $O_2$ , tetrahydrobiopterin, and the iron atom in the ferrous (Fe<sup>++</sup>) oxidation state participate in the hydroxylation.

 $O_2$  is thought to react initially with the tetrahydrobiopterin to form a peroxy intermediate.

- •Genetic deficiency of Phenylalanine Hydroxylase leads to the disease phenylketonuria.
- •Phenylalanine & phenylpyruvate (the product of phenylalanine deamination via transaminase) accumulate in blood & urine.



- •Mental retardation results unless treatment begins immediately after birth. **Treatment** consists of **limiting phenylalanine intake** to levels barely adequate to support growth.
- •Tyrosine, an essential nutrient for individuals with phenylketonuria, must be supplied in the diet.



**Tyrosine** is a precursor for synthesis of melanins and of epinephrine and norepinephrine.

High [phenylalanine] inhibits Tyrosine Hydroxylase, on the pathway for synthesis of the pigment **melanin** from tyrosine. Individuals with phenylketonuria have light skin & hair color.

#### Tryptophan metabolism forms acetoacetate

Tryptophan catabolism is shown below:

Like phenylalanine catabolism, dioxygenases are required to catabolize the aromatic rings.

## Catabolic pathways of Sulfur containing Amino Acids

- 1) Methionine
- 2) Cysteine

#### 1) Methionine

### enter metabolism as succinyl CoA

- •Converted into S-adenosylmethionine (SAM), (a major universal methyl donor in one-carbon metabolism)
- •It is also a source of homocysteine---a metabolite associated with artherosclerotic vascular disease
- 1) Methionine condenses with ATP to form S-adenosylmethionine
- Methyl group is activated and transferred to oxygen, nitrogen or carbon atoms.
- The reaction product is S-adenosylhomocysteine
- S-adenosylhomocysteine is hydrolyzed to homocysteine.
- Homocysteine has two fates:
- a) In case of methionine deficiency it is remethylated to methionine
- b) If methionine stores are adequate, it enters transulferation pathway to form cysteine and  $\alpha$ -ketobutyrate, which is oxidatively decarboxylated to form propionyl CoA which is then converted to Succinyl CoA.





Methionine Cycle: Methionine  $\rightarrow$  S-Adenosylmethionine by ATP-dependent reaction.

### Significance of Methionine cycle

- (1) SAM is the direct donor of methyl in body. Methylation can synthesize many important materials such as: choline, creatine, etc.
- (2) N<sup>5</sup>-CH<sub>3</sub>FH<sub>4</sub> is the indirect donor of methyl in the body.

**SAM** is a methyl group donor in synthetic reactions.

 $H_3C$ 

The resulting *S*-adenosylhomocysteine is hydrolyzed to homocysteine.

Homocysteine may be catabolized via a complex pathway to cysteine & succinyl-CoA.





Or methionine may be regenerated from homocysteine by methyl transfer from N<sup>5</sup>-methyl-tetrahydrofolate, via a methyltransferase enzyme that uses B<sub>12</sub> as prosthetic group.

The methyl group is transferred from THF to B<sub>12</sub> to homocysteine.

Another pathway converts homocysteine to glutathione.





In various reactions, **S-adenosylmethionine (SAM)** is a donor of diverse chemical groups including methylene, amino, ribosyl and aminoalkyl groups, and a source of 5'-deoxyadenosyl radicals.

But SAM is best known as a methyl group donor.





#### **Examples:**

#### S-adenosylmethionine as methyl group donor

- methylation of bases in tRNA
- methylation of cytosine residues in DNA
- methylation of norepinephrine -> epinephrine

Enzymes involved in formation and utilization of adenosylmethionine are particularly active in liver.

Liver has important roles in synthetic pathways involving methylation reactions, & in regulation of blood methionine.

### Methyl Group Donors

#### Methyl group donors in synthetic reactions include:

- methyl-B<sub>12</sub>
- S-adenosylmethionine (SAM)
- N⁵-methyl-tetrahydrofolate (N⁵-methyl-THF)

### 2) Cystine/Cysteine enter metabolism as pyruvate



cystine

cysteine

cysteine

### Overview of Amino Acid Catabolism

