Acids and Bases

Sour taste

Ant venom – Formic acid

pH Scale

- A change of 1 pH unit represents a **tenfold** change in the acidity of the solution.
- For example, if one solution has a pH of 1 and a second solution has a pH of 2, the first solution is not twice as acidic as the second—it is **ten times** more acidic.

Uses of Acids

- Acetic Acid = Vinegar
- Citric Acid = lemons, limes, & oranges. It is in many sour candies such as lemonhead & sour patch.
- Ascorbic acid = Vitamin C which your body needs to function.
- Sulfuric acid is used in the production of fertilizers, steel, paints, and plastics.
- Car batteries

Uses of Bases

- Bases give **soaps**, **ammonia**, and many other cleaning products some of their useful properties.
- Your blood is a basic solution.

• Caffeine $[C_8H_{10}N_4O_2]$

- is a weak base
- taste bitter and smell like tea,
- > a cardiac stimulant, (boost of energy),
- > mild diuretic, addictive,
- operates using the same mechanisms that amphetamines, cocaine and heroin use to stimulate the brain.

Arrhenius acids and bases

Arrhenius acid (1880s) : Any substance that, when dissolved in water, increases the concentration of hydronium ion (H₃O⁺)

$$HCl(aq) \rightleftharpoons H^+(aq) + Cl^-(aq)$$

Arrhenius base (1880s) : Any substance that, when dissolved in water, increases the concentration of hydroxide ion (OH⁻)

$$NaOH(aq) \rightleftharpoons Na^+(aq) + OH^-(aq)$$
 Adds and

Problems with Arrhenius theory

- Only compounds with OH⁻ can be classified as a base. What about ammonia, NH₃ ?
- Can only be applied to reactions that occur in water
- Would incorrectly classify some compounds as acids, such as CH₄

Which is the acid and which is the base in each of these rxns?

 $HCl + H_2O \rightleftharpoons \left[Cl^- \cdots H^+ \cdots H_2O\right] \rightleftharpoons H_3O^+ + Cl^ NH_3 + H_2O \rightleftharpoons \left[NH_3 \cdots H^+ \cdots OH^-\right] \rightleftharpoons NH_4^+ + OH^-$

Conjugate Acid-Base Pairs

Conjugate Acids and Bases:

 Reactions between acids and bases always yield their conjugate bases and acids.

A Brønsted–Lowry acid...

...must have a removable (acidic) proton. HCI, H_2O , H_2SO_4 <u>A Brønsted–Lowry base</u>... ...must have a pair of nonbonding electrons. NH₃, H₂O

Brønsted-Lowry Theory of Acids & Bases

 $HNO_3(aq) + NH_3(g) \rightleftharpoons NH_4^+(aq) + NO_3^-(aq)$

Problems with **B-L** theory

• The theory works very nicely in all **protic** solvent, but fails to explain acid-base behavior in **aprotic** solvents and non-solvent situations.

 A more general concept on acid and base was proposed by G.N. Lewis at about the same time Bronsted-Lowry theory was proposed.

Lewis Acids

- Lewis acids are defined as <u>electron-pair acceptors</u>.
- Atoms with an empty valence orbital can be Lewis acids.
- Lewis bases are defined as <u>electron-pair donors</u>.
- Lewis bases can interact with things other than protons.

and Bases

Acid and Base Strength

100%

 H_2O

ionized in

- Strong acids are completely dissociated in water.
 - Their conjugate bases are <u>quite</u> weak.
- Weak acids only dissociate partially in water.
 - Their conjugate bases are weak bases.

		ACID	BASE		
ſ	50	HCl	Cl^{-}	ole	
ł	rong	H_2SO_4	HSO_4^-	ligil	
	St	HNO ₃	NO_3^-	Neg	
,		$H_3O^+(aq)$	H ₂ O		
		$\mathrm{HSO_4}^-$	SO_4^{2-}		ISES
7		H_3PO_4	$H_2PO_4^-$		crea
Î		HF	F^-		h in
	ak	$HC_2H_3O_2$	$C_{2}H_{3}O_{2}^{-}$		engt
		H_2CO_3	HCO_3^-	ak	e str
Ises	We	H_2S	HS^-	We	Base
Icrea		$H_2PO_4^-$	HPO_4^{2-}		
th in		$\mathrm{NH_4}^+$	NH3		
engl		HCO_3^-	CO_{3}^{2-}		Ļ
d str		HPO_4^{2-}	PO_{4}^{3-}		,
Acid		H ₂ O	OH^-		
	ble	OH^-	O^{2-}	60	100%
	gligi	H ₂	H^-	tron	> protonated
	Ne	CH ₄	CH_3^-	S	

In any acid-base reaction, the equilibrium favors the reaction <u>that moves the proton</u> to the stronger base.

$$HCI(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

H₂O is a much stronger base than CI⁻, so the equilibrium lies so far to the right, K is not measured (K>>1).

Acid and Base Strength

- Acetate (CH₃COO⁻) is a stronger base than H₂O, so the equilibrium favors the left side (K<1).</p>
- > The stronger base (CH_3COO^-) "<u>wins</u>" the proton.
- What happens when HCI is dissolved in acetic acid? (an acid in an acid)?

 $CI^{-}(aq) + CH_{3}COOH_{2}^{+}(aq)$

.

HCI is a weak acid in acetic acid?

HCI + CH₃COOH(aq)

Autoionization of Water

Water is amphoteric

 In pure water, <u>a few</u> molecules act as bases and a few act as acids.

 $H_2O(l) + H_2O(l) \rightleftharpoons OH^-(aq) + H_30^+(aq)$

This process is called auto-ionization .

Water Equilibrium

$2 H_2O(\ell) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

Self-ionization of waterWater molecules autoionize
$$H_2O(l) + H_2O(l) \rightleftharpoons OH^-(aq) + H_30^+(aq)$$
 $(H_3O^+)[OH^-]$ $\mathcal{K}_c = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$ $(conc = 1000/18 = 55.6)$ $\mathcal{K}_w = [H_2O]^2 \times \mathcal{K}_c = 1 \times 10^{-14}$ only at 25°C, it's T dependent. $\mathcal{K}_w = 55.6^2 \times \mathcal{K}_c = 1.0 \times 10^{-14}$

At 25° C,
$$K_w = 1.0 \times 10^{-14}$$

K_w increases as **T** increases, and its value remains the same in the presence of acid or base.

Solutions of strong acids and bases

Strong acids and strong bases completely ionize in their solutions.

 $\begin{array}{l} \mbox{HCl (aq) + H_2O (l) \rightarrow H_3O^+ (aq) + Cl^- (aq) } \\ \mbox{KOH (aq) \rightarrow K^+ (aq) + OH^- (aq) } \end{array}$

In a 0.100 M HCl or HNO₃ solution, $[H^+] = 0.100 \text{ M} (\text{pH} = -\log_{10} [H^+] = 1)$ and $[OH^{-}] = 1 \times 10^{-14} / 0.100 = 1 \times 10^{-13} \text{ M at } 25^{\circ}\text{C}$ In a 0.100 M NaOH or KOH solution, [OH⁻] = **0.100 M** and $[H^+] = 1 \times 10^{-14} / 0.100 = 1 \times 10^{-13} \text{ M at } 25^{\circ}\text{C}$ $(pH = -log_{10} [H^+] = \underline{13})$ In a 0.010 M Ca(OH), solution, [OH⁻] = **2** x 0.010 = **0.020** M $[H^+] = 1 \times 10^{-14} / 0.020 = 5 \times 10^{-13} M \text{ at } 25^{\circ}C$ $(pH = -log_{10} [H^+] = 12.3)$

• In pure water,

 $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$

- Because in pure water $[H_3O^+] = [OH^-]$, $[H_3O^+] = (1.0 \times 10^{-14})^{1/2} = \underline{1.0 \times 10^{-7}}$
- An acid has a higher $[H_3O^+]$ than pure water, so its pH is <7
- A base has a lower $[H_3O^+]$ than pure water, so its pH is >7.

$$POH = -\log [OH^{-}]$$

$$PK_{w} = -\log K_{w}$$

pH values for common substances.

	$[\mathrm{H}^+](M)$	pН	рОН	$[OH^{-}](M)$
	$-1(1 \times 10^{-0})$	0.0	14.0	1×10^{-14}
Gastric juice – – – – – –	-1×10^{-1}	1.0	13.0	1×10^{-13}
Lemon juice – – – – – –	-1×10^{-2}	2.0	12.0	1×10^{-12}
Cola, vinegar	-1×10^{-3}	3.0	11.0	1×10^{-11}
Wine Tomatoes	$- 1 \times 10^{-4}$	4.0	10.0	1×10^{-10}
Black coffee	$- 1 \times 10^{-5}$	5.0	9.0	1×10^{-9}
Rain – – – – – – – – – – – – – – – – – – –	$- 1 \times 10^{-6}$	6.0	8.0	1×10^{-8}
Milk – – – – – – – – – – – – – – – – – – –	$- 1 \times 10^{-7}$	7.0	7.0	1×10^{-7}
Egg white, seawater – – Baking soda – – – – – –	$- 1 \times 10^{-8}$	8.0	6.0	1×10^{-6}
Borax	$- 1 \times 10^{-9}$	9.0	5.0	1×10^{-5}
Milk of magnesia – – –	$- 1 \times 10^{-10}$	10.0	4.0	1×10^{-4}
Lime water	$- 1 \times 10^{-11}$	11.0	3.0	1×10^{-3}
Household ammonia – –	-1×10^{-12}	12.0	2.0	1×10^{-2}
NaOH, 0.1 <i>M</i>	-1×10^{-13}	13.0	1.0	1×10^{-1}
	-1×10^{-14}	14.0	0.0	$1 (1 \times 10^{-0})$

More acidic

Because

$[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14},$

Taking -ve log on both sides of equation:-

$$-\log [H_3O^+] + -\log [OH^-] = -\log K_w$$

or, in other words,

$$pH + pOH = pK_w = 14.00$$

If you know one, you know the rest: [H+], [OH-], pH , pOH

How is pH measured ?

Litmus paper

- "Red" paper turns blue above ~pH = 8
- "Blue" paper turns red below ~pH = 5
- An indicator
 - Compound that changes color in solution

How Do We Measure pH?

pH meters: Measure the voltage in the solution

Strong Acids

- The seven strong acids are HCI, HBr, HI, HNO₃, H_2SO_4 , HCIO₃, and HCIO₄.
- These are strong electrolytes and exist totally as ions in aqueous solution.
- For the *monoprotic* strong acids, $[H_3O^+] = [Acid]$.
- For the *diprotic* strong acids, $[H_3O^+] = 2x[Acid]$.
- For the *triprotic* strong acids, $[H_3O^+] = 3x$ [Acid].

Strong Bases

- Strong bases are the soluble hydroxides, which are the alkali metal (NaOH, KOH) and heavier alkaline earth metal hydroxides e.g. Ca(OH)₂.
- These substances dissociate completely in aqueous solution.

[OH⁻] = [hydroxide added] x equivalent of OH⁻ released

• Are strong electrolytes and exist totally as **ions** in aqueous solution.

Dissociation Constants

- For a generalized acid dissociation in water,
- $HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$

the equilibrium expression is

$$K_c = K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

This equilibrium constant is called the acid-dissociation constant, K_a.

The greater the value of K_a , the stronger the acid.

Acid	Structural Formula	Conjugate Base	Equilibrium Reaction	K _a
Hydrofluoric (HF)	HF	F ⁻	$HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$	6.8×10^{-4}
Nitrous	H —0—N≡0	NO_2^-	$HNO_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$	$4.5 imes 10^{-4}$
(HNO ₂) Benzoic (HC ₇ H ₅ O ₂)	н−о−с⊂(O)	C ₇ H ₅ O ₂ ⁻	$\mathrm{HC}_{7}\mathrm{H}_{5}\mathrm{O}_{2}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{2}^{-}(aq)$	6.3×10^{-5}
Acetic (HC ₂ H ₃ O ₂)	н—о—с—с—н н	$C_2H_3O_2^-$	$\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}^{-}(aq)$	1.8×10^{-5}
Hypochlorous (HClO)	Ю—0— Н	C10	$\mathrm{HClO}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{ClO}^{-}(aq)$	$3.0 imes 10^{-8}$
Hydrocyanic (HCN)	H-−C≡=N	CN^{-}	$HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$	4.9×10^{-10}
Phenol (HC ₆ H ₅ O)	H-0-{O	C ₆ H ₅ O ⁻	$\mathrm{HC}_{6}\mathrm{H}_{5}\mathrm{O}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}^{-}(aq)$	1.3×10^{-10}

*The proton that ionizes is shown in blue.

Calculating *K_a* from the pH

The pH of a 0.10 M solution of formic acid, HCOOH, at 25° C is 2.38. Calculate K_a for formic acid at this temperature.

$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$

> To calculate K_a , we need all equilibrium concentrations.

We can find [H₃O⁺], which is the same as [HCOO⁻], from the pH.

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating K_a from the pH cont. pH = $-\log[H_3O^+]$

 $2.38 = -\log [H_3O^+]$

 $-2.38 = \log [H_3O^+]$

 $[H_3O^+] = [HCOO^-] = 4.2 \times 10^{-3} M$

Calculating K_a from pH $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$ In table form:

	[HCOOH], M	[H ₃ O+], M	[HCOO ⁻], M
Initially	0.10	0	0
Change	-4.2 × 10 ⁻³	+4.2 × 10 ⁻³	+4.2 × 10 ⁻³
At Equilibrium	0.10 - 4.2 × 10 ⁻³	4.2 × 10 ⁻³	4.2 × 10 ^{- 3}
At Equilibrium	= 0.0958 ≈ 0.10	4.2 × 10 ⁻³	4.2 × 10 ⁻³

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating K_a from pH $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$

$$K_a = \frac{\left[H_3O^+\right]\left[HCOO^-\right]}{\left[HCOOH\right]}$$

Ka =
$$\frac{4.2 \times 10^{-3} \times 4.2 \times 10^{-3}}{0.10 - 4.2 \times 10^{-3}}$$

$$K_a \approx \begin{bmatrix} 4.2 \times 10^{-3} \end{bmatrix} \begin{bmatrix} 4.2 \times 10^{-3} \end{bmatrix} \\ \begin{bmatrix} 0.10 \end{bmatrix}$$

 $K_a \approx 1.8 \times 10^{-4}$

Calculating Percent Ionization $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$ $Percent \ ionization = \frac{amount \ ionized}{total \ in \ solution} \times 100$ In the example: $[HCOO^{-}]_{eq} = [H_3O^{+}]_{eq} = 4.2 \times 10^{-3} M$ $[HCOOH]_{initial} = 0.10 M$ Percent Ionization = $\frac{4.2 \times 10^{-3}}{0.10} \times 100$ = 4.2%

Calculating pH from K_a

 $pK_a = -\log K_a$ $K_a = 10^{-pKa}$ Calculate the pH of a <u>0.30 M</u> solution of acetic acid, C₂H₃O₂H, at 25° C.

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

 K_a for acetic acid at 25° C is 1.8×10^{-5} .

Q: Is acetic acid more or less ionized than formic acid ($K_a=1.8 \times 10^{-4}$)?

Calculating pH from K_a $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

The equilibrium constant expression is:

$$K_a = \frac{\left[H_3O^+\right]\left[CH_3COO^-\right]}{\left[CH_3COOH\right]}$$

Calculating pH from K_a $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

Use the ICE table:

	[C ₂ H ₃ O ₂], <i>M</i>	[H ₃ O+], <i>M</i>	[C ₂ H ₃ O ₂ [−]], <i>M</i>
Initial	0.30	0	0
Change	X	+ <i>X</i>	+ <i>X</i>
Equilibrium	0.30 <i>– x</i>	X	X

$$K_a = \frac{x^2}{0.30 - x}$$

Simplify: how big is x relative to 0.30? *i.e.*,

Equilibrium	0.30 <i>− x ≈ 0.30</i>	X	X
-------------	------------------------	---	---

Calculating pH from K_a $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

$$K_a = \frac{x^2}{0.30 - x} \simeq \frac{x^2}{0.30}$$

NB: $x = [H_3O^+]$ $K_a \times 0.3 = x^2$

$$(1.8 \times 10^{-5}) (0.30) = x^2$$

$$5.4 \times 10^{-6} = x^2$$

$$2.3 \times 10^{-3} = X$$

$$pH = -log [H_3O^+]$$

 $pH = -\log(2.3 \times 10^{-3})$

Determine K_a and percent ionization

Nicotinic acid, HNic, is a monoprotic acid. A solution containing 0.012 M HNic, has a pH of 3.39. What is its K_a ? What is the percent of ionization?

olution: HNic = $H^+ + Nic^-$ Initial 0.012 = 0 0 Eqm 0.012 - $\mathbf{x} = \mathbf{x} + \mathbf{x}$ Solution: $\mathbf{X} = [\mathbf{H}^+] = 10^{-\mathbf{pH}} = 10^{-3.39} = 4.1 \times 10^{-4}$ [HNic] = 0.012 - 0.00041 = 0.012 $(4.1 \times 10^{-4})^2$ $K_a = ----- = 1.4 \times 10^{-5}$ 0.012

Degree of ionization = 0.00041 / 0.012 = 0.034 = 3.4%

Application of K_a

The K_a of nicotinic acid, HNic, is 1.4x10⁻⁵. A solution containing 0.22 M HNic. What is its pH? What is the degree of ionization?

Solution: HNic = H^+ + Nic⁻ 0.22 - x = x + xx 2 $K_{a} = ----- = 1.4 \times 10^{-5}$ $0.22 - X (\approx 0.22)$ $x = \sqrt{(0.22 \times 1.4 \times 10^{-5})} = 0.0018$ $pH = -\log(0.0018) = 2.76$

Weak Bases

 $\ddot{B} + H_2 O \rightleftharpoons HB^+ + OH^-$

Bases react with water to produce hydroxide ion.

Weak Bases

$$\ddot{B} + H_2 O \rightleftharpoons HB^+ + OH^-$$

The equilibrium constant expression for this reaction is

$$K_c = K_b = \frac{[HB^+][OH^-]}{[B]}$$

where K_b is the base-dissociation constant.

Weak Bases

 K_b can be used to find [OH⁻] and, through it, pH.

Base	Lewis Structure	Conjugate Acid	Equilibrium Reaction	K _b
Ammonia (NH ₃)	н—N—н н	$\mathrm{NH_4}^+$	$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$	1.8×10^{-5}
Pyridine (C ₅ H ₅ N)	()v:	$C_5H_5NH^+$	$C_5H_5N + H_2O \Longrightarrow C_5H_5NH^+ + OH^-$	1.7×10^{-9}
Hydroxylamine (H ₂ NOH)	H-N-ÖH	H ₃ NOH ⁺	$H_2NOH + H_2O \Longrightarrow H_3NOH^+ + OH^-$	1.1×10^{-8}
Methylamine (NH ₂ CH ₃)	$H \longrightarrow H$	NH ₃ CH ₃ ⁺	$NH_2CH_3 + H_2O \Longrightarrow NH_3CH_3^+ + OH^-$	$4.4 imes 10^{-4}$
Hydrosulfide ion (HS ⁻)	[H	H_2S	$HS^- + H_2O \Longrightarrow H_2S + OH^-$	$1.8 imes 10^{-7}$
Carbonate ion (CO ₃ ^{2–})		HCO ₃ ⁻	$CO_3^{2-} + H_2O \Longrightarrow HCO_3^- + OH^-$	$1.8 imes 10^{-4}$
Hypochlorite ion (ClO ⁻)	[;ġ—ġ] ⁻	HCIO	$CIO^- + H_2O \Longrightarrow HCIO + OH^-$	3.3×10^{-7}

Simplify: How big is X relative to 0.15?

$$1.8 \times 10^{-5} = \frac{(x)^2}{(0.15)}$$
$$x^2 = (1.8 \times 10^{-5}) (0.15)$$
$$x^2 = 2.7 \times 10^{-6}$$
$$x = 1.6 \times 10^{-3}$$
$$X = [OH^-] = 1.6 \times 10^{-3} M$$

Therefore,

 K_a and K_b are linked:

 $\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \quad K_b$ $NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ \quad K_a$

Combined reaction = ?

 K_a and K_b are linked:

$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- K_b$

$NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ K_a$

Combined reaction

 $2H_2O \rightleftharpoons H_3O^+ + OH^- \quad K_a \times K_b = K_w$

 K_a and K_b

Acid	K _a	Base	K _b
HNO ₃	(Strong acid)	NO ₃ ⁻	(Negligible basicity)
HF	6.8×10^{-4}	F^{-}	1.5×10^{-11}
$HC_2H_3O_2$	$1.8 imes 10^{-5}$	$C_2H_3O_2^-$	$5.6 imes 10^{-10}$
H_2CO_3	$4.3 imes 10^{-7}$	HCO_3^-	2.3×10^{-8}
$\mathrm{NH_4}^+$	$5.6 imes 10^{-10}$	NH ₃	1.8×10^{-5}
HCO_3^-	$5.6 imes 10^{-11}$	CO_3^{2-}	$1.8 imes 10^{-4}$
OH-	(Negligible acidity)	O ²⁻	(Strong base)

 K_a and K_b are related : $K_a \times K_b = K_w$ Therefore, if you know one of them, you can calculate the other.

- The more polar the <u>H-X bond</u> and/or the weaker the <u>H-X</u> bond, the more acidic the compound.
- Acidity increases from left to right across a Period and from top to bottom down a group.

In <u>oxyacids</u>, in which an OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid.

Acid	EN of Y	K _a
HClO	3.0	3.0×10^{-8}
HBrO	2.8	$2.5 imes 10^{-9}$
HIO	2.5	$2.3 imes10^{-11}$

For a series of oxyacids, acidity increases with the **number** of **oxygens**.

Resonance in the conjugate bases of carboxylic acids **stabilizes** the base and makes the conjugate acid more acidic.

PRACTICE EXERCISES

Niacin, one of the B vitamins, has the following molecular structure.

- A 0.020 *M* solution of niacin has a pH of 3.26.
 (a) What percentage of the acid is ionized in this solution?
 (b) What is the acid-dissociation constant, *K_a*, for niacin?
- Calculate the percentage of HF molecules ionized in (a) a 0.10 *M* HF solution, (b) a 0.010 *M* HF solution. Ka for HF is 6.8 x10⁻⁴.
- 3. A solution of acetic acid is 2% ionized at 25° C. $K_a=1.8 \times 10^{-5}$. What was the original concentration of the acid?

Behavior of oxides in water- Group A

	1A			basic amph					npho	oter	ic		acidic					8A
1	1 H	2A											3.	A 4/	۹ 5A	6A	7A	${\rm He}^{\rm z}$
2	3 Li	Be											s B	ĉ	7 N	8 O	9 F	10 Ne
3	Na Na	12 Mg		Group B									19 Al	14 Si	15 P	18 S	17 Cl	18 Ar
4	19 K	eo Ca	21 Sc	ee Ti	es V	24 Cr	25 Мп	ze Fe	27 Co	29 Ni	29 Cu	эо Zn	81 Ga	se Ge	əə As	³⁴ Se	ss Br	86 Kr
5	37 Rb	за Sг	39 Y	40 Zr	41 N b	42 Mo	43 Te	44 Ru	Rh	48 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Те	53 I	54 Xe
6	55 Cs	se Ba	*	72 Hf	79 Ta	74 W	75 Re	78 Os	77 Ir	78 Pt	79 Au	во Hg	81 Tl	88 Pb	83 Bi	в4 Ро	85 At	ee Rn
7	θĩ Fr	ee Ra	**	104 R f	105 Db	106 Sg	107 Bh	10 0 Hs	109 Mt	110	111	112						

basic: Na₂O + H₂O \rightarrow 2NaOH (O²⁻ + H₂O \rightarrow 2OH⁻)

acidic: $CO_2 + H_2O \rightarrow H_2CO_3$