RESPIRATORY PHYSIOLOGY

M. F. Din

Respiration

 All those processes that maintain the normal levels of oxygen and carbon dioxide in the body

- Internal (Cellular) respiration
 - $^{\circ}$ This is the oxidation of substrate to release energy (and CO2)
- 'External respiration'
 - This is the absorption of oxygen and the removel of carbondioxide from the body

Aim of respiration

- To maintain
 - Pa O₂
 - \circ Pa CO₂
 - pH

Steps of respiration

- Ventilation
- Diffusion
- Gas transport
- Tissue gas exchange
 Control of all the above

Respiratory System Divisions

- Upper tract
 - Nose, pharynx and larynx
- Lower tract
 - Trachea, bronchi, lungs

Alveolus and Respiratory Membrane

300 million alveoli
0.33mm diameter
0.5 micron thickness
Large surface area- 70m²

Basic physics of gases

PHYSICAL PRINCIPLES OF GAS EXCHANGE Properties of GASES

Boyle's Law: Presssure $\propto 1/V$

Partial Pressure = pressure exerted by any one gas in a mixture

Partial Pressure = total pressure x fraction of total represented by the gas (Dalton's law), i. e.,

> $P_{gas} = P_{total} \times f_{gas}$ Composition of Air

At equilibrium, PO₂ in air and water is equal. Low O₂ solubility means concentrations are not equal.

Conc. of gas in solution = partial pressure of gas X solubility coefficient

 $[O_2] in moles/L: [O_2] = PO_2 \times SO_2$

What is DIFFUSION?

How fast is DIFFUSION?

Diffusion distance (µm)	Time required for diffusion
1	0.5 msec
10	50 msec
100	5 seconds
1,000 (1 mm)	8.3 minutes
10,000 (1 cm)	14 hours

Fick's Law of Diffusion

Rate of diffusion = dm/dt = $D \cdot \mathbf{A} \cdot \frac{dC}{dx}$

- A = area available for diffusion
- **C** = concentration of the substance

0,

Ρ,

hickness

Area

P₁

CO.

x = the distance for the diffusion

D = *the diffusion coefficient*

Ventilation

The process of breathing in and out

Ventilatory apparatus

- Chest wall
 - Ribs
 - Intercostals
- The lungs
- The pleural space
- Muscles of respiration
 - Inspiratory
 - Expiratory

Work of Breathing

Compliance Work: force to expand lung against its elastic properties

Force to overcome viscosity of lung & chest wall

Airway Resistance Work: force to move air through airways

Surface tension

What is **surface tension**?

Surface tension

- Causes the distention of the lung in the expiration stage to be very dificult
- May result in collapse of smaller alveoli
- The negative pressure may result in fluid entry into the alveoli
- To compensate for this the lining of lungs secrete SURFACTANT

Dead space

This is the portion of the airway that does not participate in gaseous exchange

- Anatomical dead space
 - this the portion of the airway that does not have alveoli and therefore cannot participate in gaseous exchange
 - 150ml

Physiological dead space = TOTAL DEAD SPACE

physiological V_{D} = anatomical V_{D} + alveolar V_{D}

The alveolar dead space would be those alveoli- bearing areas that are not participating in exchange.

This would be pathological

eg lack of circulation or very thich barrier

In the normal person, physiological dead space equals anatomical dead space

THE SPIROMETER

- Old version
 - spirometer bell
 - kymograph pen

New version
 portable

Blood Gas Exchange 'diffusion'

- This is the exchange of gases across the Blood-gas barrier
- Is passive
- Occurs along the gas pressure gradients
- Is dependant on
 - Ventilation
 - Perfusion

'Alveolar air'

- This is the air in contact with alveoli
- Volume: 2L
- Each breath adds and takes away 350ml
- The composition remains relatively constant
- Can be sampled by the last 10ml of expired air.

Pulmonary circulation

Characteristics of the Pulmonary Circulation

Ventilation-Perfusion matching

Matching respiration & blood flow: the Ventilation-Perfusion Ratio

Ventilation

Alveolar ventilation, V_A $V_A = (V_T - V_D) x$ resp. rate = (0.5 - 0.15) x 12 = 4.2 L/min **Perfusion** Cardiac output = C.O. = Q Q = stroke vol. x heart rate = (0.086) x 70 = 6.0 L/min

 $\frac{V_A}{Q} =$

= ventilation/perfusion ~ 0.8

Ventilation in alveoli is matched to perfusion through pulmonary capillaries

Blood Gas transport

Oxygen transport

Minor

- Dissoved- 3% of total
- In arteries- 0.3ml/100ml of blood
- Not sufficient for body requirement

MAJOR

- In combination with haemoglobin
- 97%

Oxygen-Hemoglobin Dissociation Curve

Carbondioxide transport

- Dissolved- 10%
- As Bicarbonate- 70%
- As Carbamino compounds- 20%

Blood tissue gas exchange

Control of respiration

- Aim is to maintain physiological levels of
 - Oxygen
 - Carbondioxide
 - pH

Respiratory Structures in Brainstem

Input to Resp. centres

Hypercapneic ventilatory drive

- Important in short term, in the long term the pH changes in CSF are buffered so becomes ineffective.
- Is the one driving resp in most physiological instances
- Hypoxic ventilatory drive
 - Very powerful, more important when low oxygen levels

Responses of the Respiratory System to Exercise

Non respiratory function of respiratory tract

- Olfaction
- Air conditioning
- Voice
- Defense:
 - Immune
 - Cellular
 - secretory
 - Reflexes
 - Cough
 - sneeze
- Metabolic
 - Secretion
 - conversion
- Circulatory
 - Filter
 - 'reservoir'

Thank you

