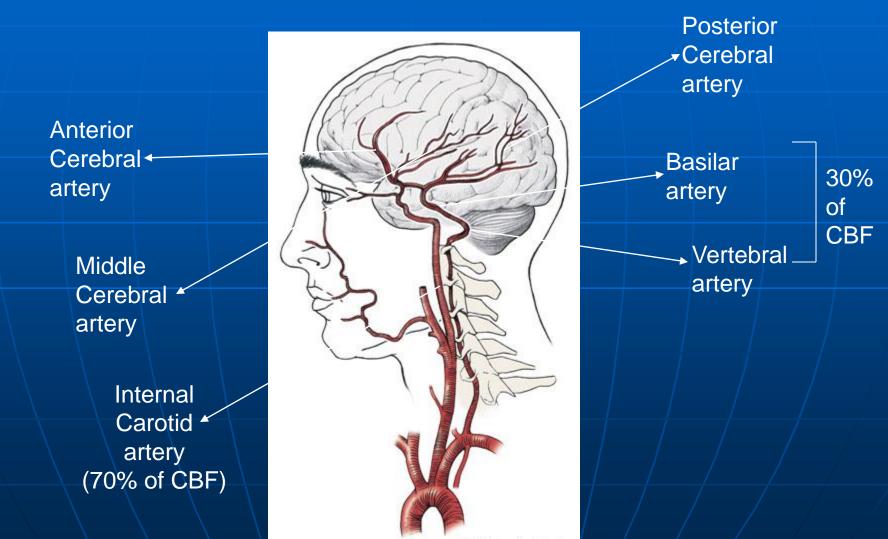
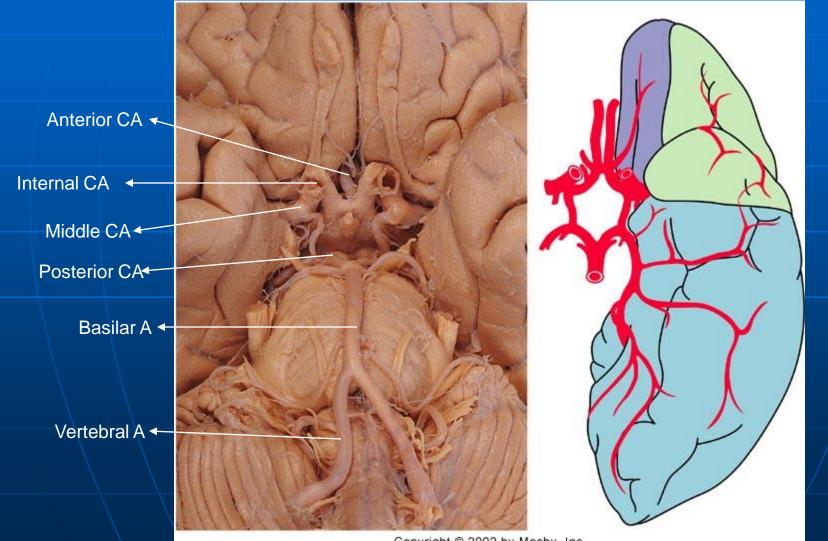
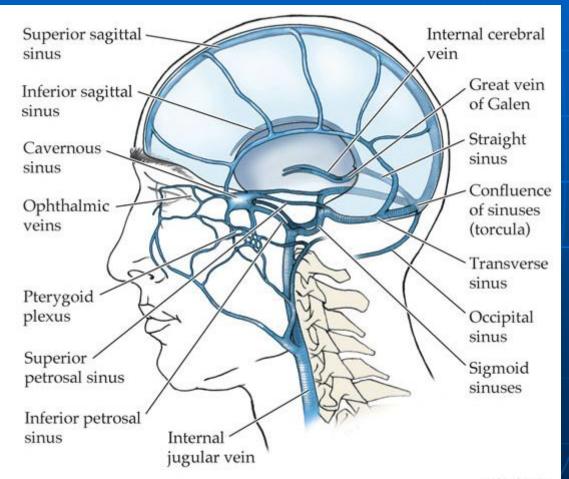
Circulation in special areas: Brain and Liver


F Bukachi MBChB, MMed, MSc, DIC, PhD Department of Medical Physiology, University of Nairobi, Kenya

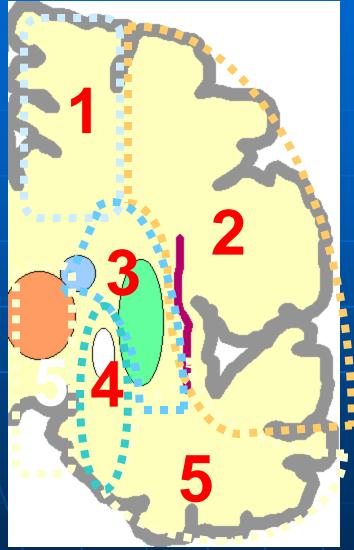
- To understand :
- Cerebral blood supply (review of anatomy)
- Cerebral physiology
- Factors affecting cerebral blood flow
- Autoregulatory mechanisms


Review sample questions

Overview of cerebral circulation Arterial supply


© 2002 Sinauer Associates, Inc.

Overview of cerebral circulation Circle of Willis


Copyright © 2002 by Mosby, Inc.

Overview of cerebral circulation Venous drainage

uer Associates, Inc.

Cerebral Artery Areas

1. anterior cerebral

2. Middle cerebral

3. Penetrating branches of middle cerebral

4. Anterior choroidal

5. Posterior cerebral

Cerebral physiology I 2% of BW (1400 g brain, 75 ml blood 75 ml CSF (Monro Kellie doctrine) 20% of Total body O₂ consumption (60% used for ATP formation) CMR O₂ 3-3.8mL /100 gm/min • (50 ml /min in Adult) ■ 15% of CO Glucose consumption 5mg/100gm/min (25% of total body consumption/min) CMR, Cerebral Metabolic Rate

Cerebral physiology II
 High oxygen consumption but no reserve

- Grey matter of cerebral cortex consumes more
- Directly proportional to electrical activity

 (Hippocampus & cerebellum most sensitive to hypoxic injury)

Normal Physiologic Values

CBF	
GLOBAL	45-55ml/100g/min
CORTICAL	75-80ml/100g/min
SUBCORTICAL	20ml/100g/min
CMRO ₂	3-3.5ml/100g/min
CVR	2.1mmHg/100ml/min/ml
Cerebral venous PO ₂	32-44mmhg
Cerebral venous SO ₂	55%-70%
ICP(supine)	8-12mm Hg

Cerebral physiology III

Approximately 60 % of the brain's energy consumption is used to support electrophysiological function.

Remaining 40%-?

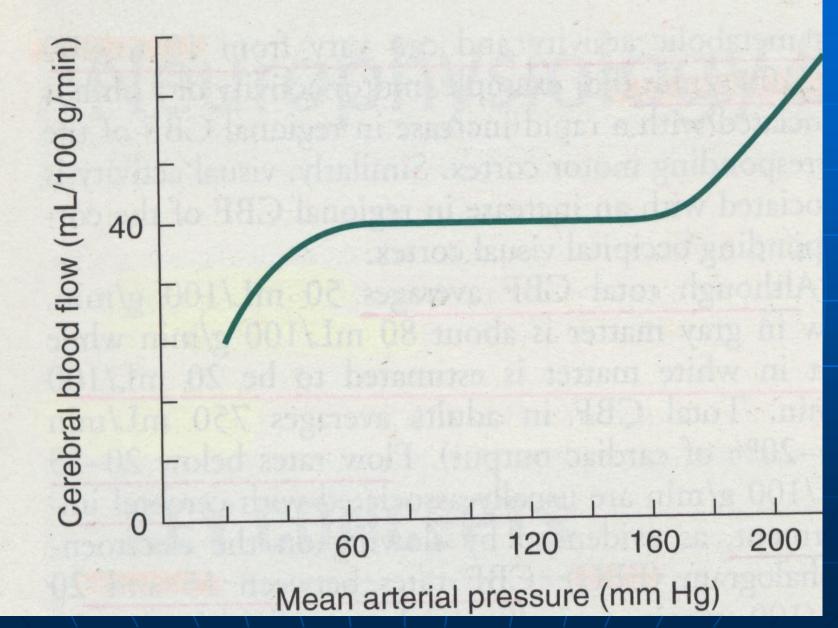
Cerebral physiology IV

 Local CBF (I-CBF) and local CMR (I-CMR) within the brain are very heterogeneous, and both are approximately four times greater in gray matter than in white matter.

Cerebral physiology V

The brain's substantial demand for substrate must be met by adequate delivery of O₂ and glucose.

 The space constraints imposed by the noncompliant cranium and meninges require that blood flow not be excessive (Monro-Kellie doctrine).
 There are elaborate mechanisms for the regulation of CBF.


Cerebral perfusion pressure (CPP)

- [MAP ICP](or CVP whichever is greater)
- Normally 80 to 100mm Hg
- ICP is <10 mmHg so CPP primarily dependent on MAP
- Increase in ICP>30 = CPP & CBF compromise
- CPP<50 slowing of EEG</p>
 - 25-40 Flat EEG

È

CPP <25 result in Irreversible brain death

CBF: Autoregulation

Factors influencing CBF

Chemical/metabolic
Myogenic
Rheologic
Neurologic

Chemical/Metabolic

CEREBRAL METABOLIC RATE
Arousal/seizures
mental tasks
Anaesthetics
Temperature
PaCO ₂
PaO ₂
Vasoactive drugs
Anaesthetics
Vasodilators
Vasopressors

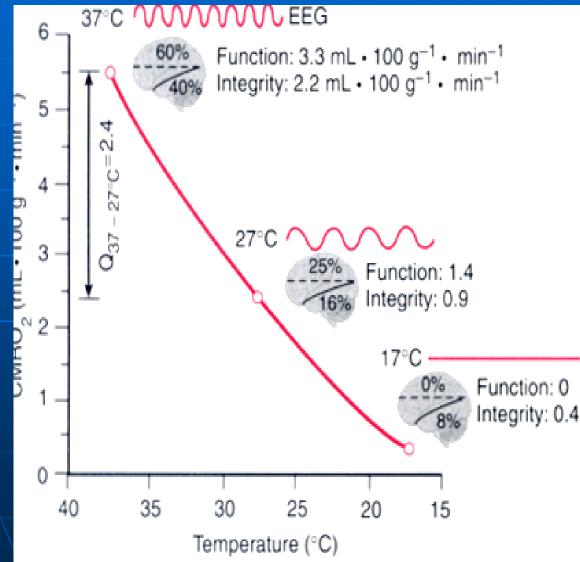
Cerebral Metabolic Rate

Increased neuronal activity results in increased local brain metabolism

 Although it is clear that local metabolic factors play a major role in these adjustments in CBF, the complete mechanism of flow metabolism coupling remains undefined.

Functional State

 CMR decreases during sleep and increases during sensory stimulation, mental tasks, or arousal of any cause.


 During epileptoid activity, CMR increases may be extreme, whereas CMR may be substantially reduced in coma.

Temperature

CMR decreases by 6 to 7 % per Celsius degree of temperature reduction.

 However, in contrast to anesthetic agents, temperature reduction beyond that at which EEG suppression first occurs does produce a further decrease in CMR

The effect of temperature reduction on the cerebral metabolic rate of oxygen

Temperature on CBF

•6-7 % decrease /°C FALL IN TEMP.

• 37-42 °C - CBF & CMRO₂

• >42 $^{\circ}$ C - CMRO₂

20 °C - ISOELECTRICITY

Partial Pressure of Carbon Dioxide
 CBF varies directly with PaCO₂
 The effect is greatest within the range of physiologic PaCO₂ variation.

 CBF changes 1 to 2 mL/100 g/min for each 1 mmHg of change in PaCO₂ around normal PaCO₂ values.
 This response is attenuated below a Pa CO₂ of 25 mm Hg.

Effect of PH on CBF I

 Changes in CBF caused by PaCO₂ are dependent on pH alterations in the ECF of the brain

 In contrast to respiratory acidosis, acute systemic metabolic acidosis has little immediate effect on CBF because the blood-brain barrier (BBB) excludes the H⁺ ion from the perivascular space.

Effect of PH on CBF II

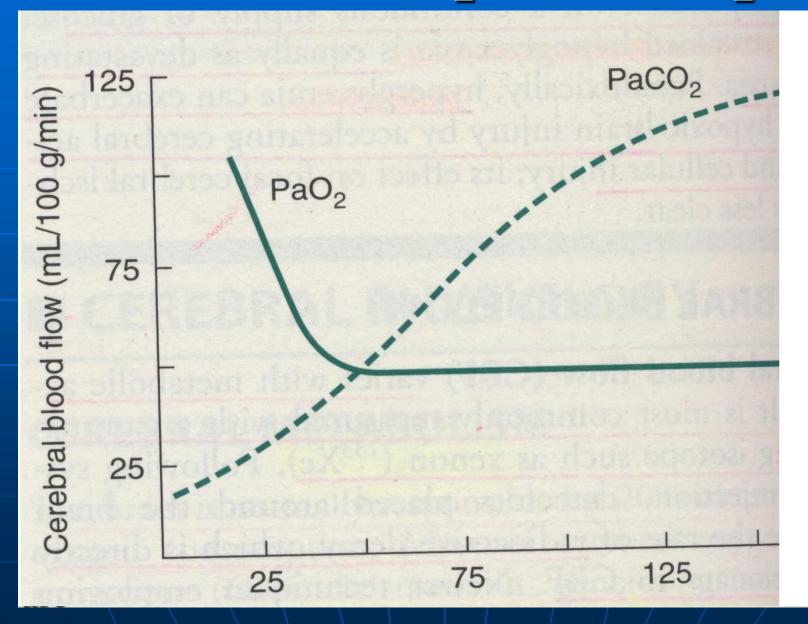
 Although the CBF changes in response to Pa CO2 alteration occur rapidly, they are not sustained.

In spite of the maintenance of an elevated arterial pH, CBF returns to normal over 6 to 8 hours because cerebrospinal fluid (CSF) pH gradually normalizes as a result of the extrusion of bicarbonate.

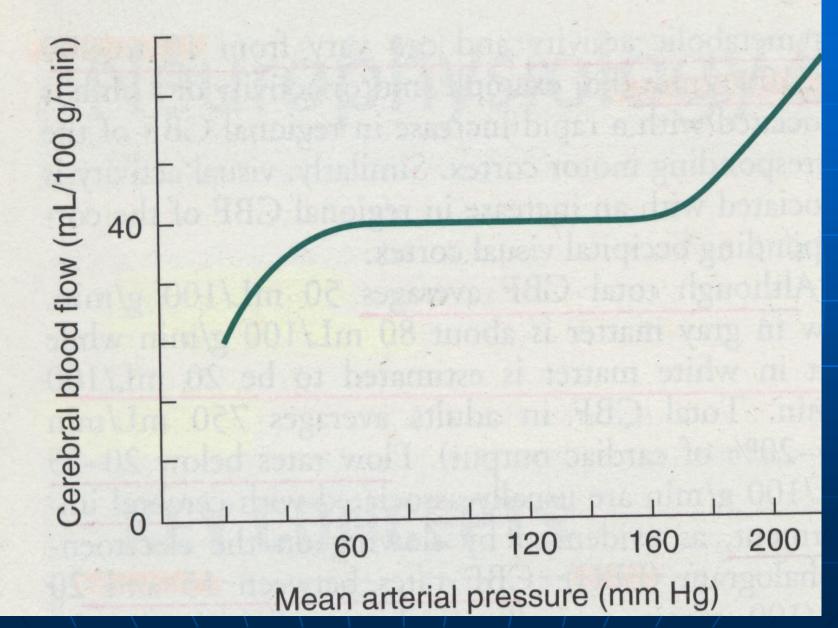
Homework

 Read about ...
 >Steal Phenomenon
 >Inverse Steal or Robin Hood Phenomenon

Partial Pressure of Oxygen


 Changes in PaO₂from 60 to more than 300 mmHg have little influence on CBF.

When the PaO₂ is less than 60 mmHg, CBF increases rapidly
 At high PaO₂values, CBF decreases modestly.

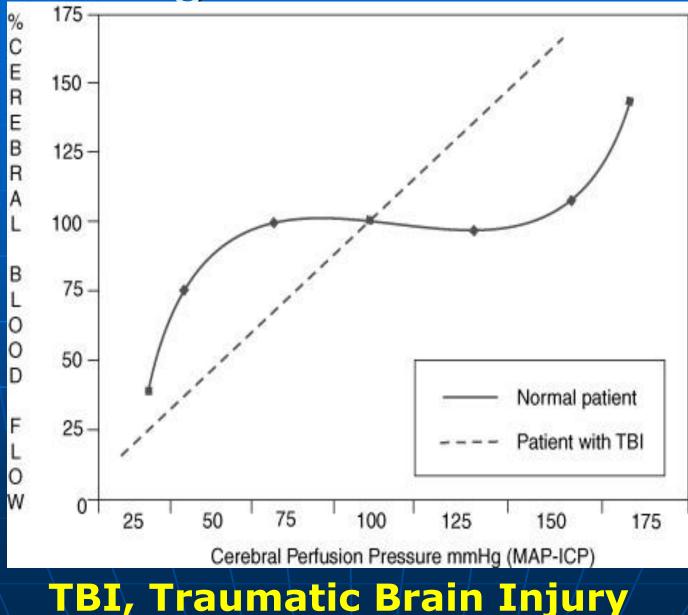

Effects of cerebral hypoxia

The mechanisms mediating the cerebral vasodilation during hypoxia are not fully understood, but they may include neurogenic effects initiated by peripheral and/or neuraxial chemoreceptors as well as local humoral influences At 1 atm O₂,CBF is reduced by 12 percent.

CBF vs. PO₂ and PCO₂

CBF: Autoregulation

Myogenic Regulation (Autoregulation)


 Autoregulation refers to the capacity of the cerebral circulation to adjust its resistance in order to maintain CBF constant over a wide range of mean arterial pressure (MAP).

Autoregulation in humans I

In normal human subjects, the limits of autoregulation occur at MAPs of approximately 70 and 150 mm Hg

 Above and below the autoregulatory plateau, CBF is pressure dependent (pressure passive) and varies linearly with CPP.

Autoregulation in humans II

Autoregulation in humans III

Autoregulation Curve shift to Right in Chronic hypertension

Decreased CPP leads to vasodilation

 Increased CPP leads to vasoconstriction

Autoregulation in humans IV

The precise mechanism by which autoregulation is accomplished is not known

 Nitric Oxide (NO) may participate in the vasodilation associated with hypotension in some species, but not, according to a single study, in primates

Neurogenic Regulation I

 There is considerable evidence of extensive innervation of the cerebral vasculature.

The density of innervation declines with vessel size, and the greatest neurogenic influence appears to be exerted on larger cerebral arteries

Neurogenic Regulation II

 This innervation includes autonomic, serotonergic, and vasoactive intestinal peptide-ergic (VIPergic) systems of extra-axial and intra-axial origin.

Viscosity Effects

 Blood viscosity can influence CBF.
 Haematocrit is the single most important determinant of blood viscosity

In healthy subjects, haematocrit variation within the normal range (33-45%) results in only trivial alteration of CBF.
 Beyond this range, changes are more substantial.

THANK YOU FOR YOUR ATTENTION

EMAIL <fbukachi@uonbi.ac.ke