BIOINFORMATICS MBChB/Bpharm/BDS Level II

Lecture 1 Dr Victor Mobegi

Introduction to Bioinformatics

- Bioinformatics is the storage, retrieval and analysis of biological data
- Another definition: computational techniques for solving biological problems
- Computers and internet resources can maximize the biological information available to a researcher.
- This can not only make the work of a researcher easier and more productive but also enable one to answer biological questions that would be impossible without electronic help e.g. Sequence analyses
- This course will introduce you to the more commonly used bioinformatics tools and resources.

Databases

- A Database is a structured collection of information.
- Databases provide the means for automated storage, retrieval and sharing of large volumes of data.
- This includes literature and molecular databases.
- Consists of basic units called records or entries.
- Each record consists of fields, which hold pre-defined data related to the record.
- For example, a protein database would have protein entries as records and protein properties as fields (e.g., name of protein, length, amino-acid sequence)

Qualities of an ideal Database

- Comprehensive, but easy to search.
- Should be annotated.
- A simple, easy to understand structure.
- Cross-referenced.
- Minimum redundancy.
- Easy retrieval of data.

Why use Databases

- Huge amount of data is being generated in experiments including high-throughput genomics, proteomics and metabolomics
- Need for storing and sharing large datasets has grown tremendously
- Archiving, curation, analysis and interpretation of all of these datasets are a challenge
- Convenient methods for proper storing, searching & retrieving are necessary
- Databases provide the means for automated storage, retrieval and sharing of these large volumes of data

Types of databases

- Literature databases: PubMed, Google Scholar, OMIM
- Molecular databases providing genomic, proteomic and metabolomic data
 - -Nucleotide sequence databases: GenBank, EMBL, DDBJ -Protein databases: Swiss-Prot, Genpept, PROSITE, PDB
- Molecular databases providing metabolic pathways data e.g. KEGG, MetaCyc, Reactome
- Specialized databases: EuPathDB, TTD

How to find a database

Database Journals

Database: The Journal of Biological Databases and Curation http://database.oxfordjournals.org/

- Nucleic Acids Research offers Database Issue every year http://nar.oxfordjournals.org/
- Database portals

DBD (<u>D</u>atabase of <u>B</u>iological <u>D</u>atabases) http://www.biodbs.info/

Types of sequence databases

- Can be broadly divided into 2 classes: Primary databases and secondary databases
- Primary Databases
- Original submissions by experimentalists
- Content controlled by the submitter
- Examples: GenBank, Trace Archive, SRA
- Secondary Databases
- Derived from primary data
- Contain results from the analysis of the sequences in the primary databases
- Content controlled by third party
- Examples: Refseq, Pfam, PROSITE, RefSNP

Nucleotide sequence databases

- Databases are the core resource for bioinformatics and many programs access databases of information.
- Frequently used classes are the biological sequence (nucleotide & protein) databases.
- Nucleotide sequence databases include:

-GenBank

http://www.ncbi.nlm.nih.gov/Genbank/

-European Nucleotide Archive (ENA) (<u>http://www.ebi.ac.uk/ena</u>) previously EMBL (European Molecular Biol Lab)

http://www.ebi.ac.uk/embl/

-DDBJ (DNA Data Bank of Japan)

http://www.ddbj.nig.ac.jp/

 Entries in the GenBank, EMBL and DDBJ databases are synchronized on a daily basis and so should be identical in content.

- Accession numbers are managed in a consistent manner
- Each of these databases consists of entries, each consisting of a single sequence preceded by annotation that puts the sequence in its biological, functional and historical context.
- However, the format of the records in these databases is different
- The growth of the DNA sequence data has been phenomenal.
- When using databases it is important to note which release of the sequence databases were used.
- Because of enormous size of the databases, to ease management they are now broken up into divisions.
- Most of these divisions are organised on the basis of taxonomy (Prokaryotes, plants, fungi, mammals etc.)
- These divisions are useful as they make it easier to search only in the relevant part of the database.

Accession numbers

- Accession numbers are used as unique and unchanging numbers
- GenBank/EMBL accession numbers were originally a letter followed by 5 digits (e.g. X32152, M22239).
- When the number of sequences in databases increased, accession numbers format changed to 2 letters followed by 6 digits (e.g. AL234556, BF345788)
- RefSeq (NCBI's reference sequence database) accession numbers format: 2 letters, and underscore, and 6 digits e.g NM_000492
- Sequences in database are updated, corrected and merged giving different versions of the sequence
- Version numbers are appended to the accession number after a dot e.g. NM_000492.2

Sample GenBank record

Header	LOCUS DEFINITION ACCESSION VERSION NETWORDS SOURCE ORGANISM	HUMPRPOA 2420 hp mRNA linear PBI 13-JUL-1094 Human prion protein 27-30 mRNA, complete cds. M18467 Nil46711 br.190468 angloid: prion protein: sialoglycoprotein. Homo sepiens (human) Somo sepiens Eukaryota: Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Narmalia; Eutheria; Euarchontoglires; Frimates; Catarchini;	S	NCBI
	REFERENCE AUTHORS TITLE JOURNAL SUINED COMMENT	Rominides: Nono. 1 (bases 1 to 2420) Lieo, Y.C., Lebo, R.V., Clavson, G.A. and Smuckler, E.A. Human price protein cDNA: molecular cloning, chronosomal mapping, and biological implications Science 233 (4761), 364-367 (1984) 3014653 Original source text: Numan, cDNA to mRNA, clones lambda [3, 4, 7]. A single price protein gene is found on chromosome 30 per heploid		
		genome.		
	FEATURES	Location/Qualifiers		
	secree	/organism="Homo sapiens" /mol_type="mRNA" /do_type="mRNA"		
	pece	12420		
		/gene="PRSF"		
Feature	mRNA	<12420		
Footune		/gene~"PRIIP"		
reature		/product="PIP mRRA"		
	0.618	Create Population		
Table		/note="price protein"		
Inore		/codon start=1		
		/protein_id="AAA19664.1"		
		/db_xzef="GI:190410"		
		/translation="MLVLFVATMSDLGLCKERFKPGGMNTGGSRYPGQGSPGGNRYPP		
L	_	KIMAGAAGAVVGGLGGIDLGSANSRFILKFGSDYEGRYTREIDHRYFWOVYTRFDE YBRGNFYNDCVNITKGHTVTTTKEBPTEIDVODERYVEGMCITQYERESGAYT GGGSNWTSSSPUTLITKFLTFLUA		
-	CRISIN	171 bp upstream of Smal site; chromosome 20.		
	1 00	sagcagoos aggitogoos testgeoigo totoggiogi gaggagaga gasgologog		
	61 gt	socogogge tgotegatge togttetett tgtggecaca tggagtgace tgggeetetg		
	121 08	segeagogo cogeagooto paggatopaa castoppopo agoopetaco oppopopo		
Para an an	241 54	niterias anerarete statastas presentas constante atoritasia		
Sequence	301 4	aportest prioriduct condicasor sortopcace catactest cracessor		
	2141 14	santotet satorattak ettetetaan etarteasta ettaatatet oppaaareet		
	2221 to	tgogtggt cottaggott acaatgtgos otgaatogtt toalgtaaga atcoasagtg		
	2281 gi	caccatta acapptottt pasatatgos tgtactttat attttotata tttgtaactt		
	2341 tq	catettot tetttigtta tataassas tigtassigt tissisiote actessits		
-	2401 at	copegodes getgegosod		

Sample EMBL record

NUCLEOTIDE

SEQUENCE

DATABASE

a) GenBank (or DDBJ) flat file format

LOCUS	SCU49845 5028 bp INA PLN 21-JUN-1999	
DEFINITION	Saccharomyces cerevisiae TCP1-beta gene, partial cds, and &x12p	
	(AXL2) and Rev7p (REV7) genes, complete cds.	
ACCESSION	U49845	
VERSION	U49845.1 GI:1293613	
KEYWORDS		
SOURCE	Saccharomyces cerevisiae (baker's yeast)	
ORGANISM	Saccharomyces cerevisiae	
	Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;	
	Saccharomycetales; Saccharomycetaceae; Saccharomyces.	
REFERENCE	1 (bases 1 to 5028)	
AUTHORS	Torpey,L.E., Gibbs,P.E., Nelson,J. and Lawrence,C.W.	
TITLE	Cloning and sequence of REV7, a gene whose function is required for	
	DNA damage-induced mutagenesis in Saccharomyces cerevisiae	7
JOURNAL	Yeast 10 (11), 1503-1509 (1994)	
PUBMED	7871890	
REFERENCE	2 (bases 1 to 5028)	
AUTHORS	Roemer, T., Madden, K., Chang, J. and Snyder, M.	
TITLE	Selection of axial growth sites in yeast requires Ax12p, a novel	
	plazma membrane glycoprotein	
JOURNAL	Genes Dev. 10 (7), 777-793 (1996)	
PUBMED	8646915	
REFERENCE	3 (bases 1 to 5028)	
AUTHORS	Roemer, T.	
TITLE	Direct Submission	
JOURNAL	Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New	
	Haven, CT. USA	

Header

b) EMBL flat file format

```
ID
    U49845; SV 1; linear; genomic DNA; STD; FUN; 5028 BP.
XX
AC
   U49845;
XX
DT
   07-MAY-1996 (Rel. 47, Created)
    25-MAR-2010 (Rel. 104, Last updated, Version 5)
DT
XX
DE
    Saccharomyces cerevisiae TCP1-beta gene, partial cds; and Ax12p (AXL2) and
DE
    Rev7p (REV7) genes, complete cds.
XX
KW
    .
XX
OS
    Saccharomyces cerevisiae (baker's yeast)
OC
    Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes;
oc
    Saccharomycetales; Saccharomycetaceae; Saccharomyces.
XX
RN [1]
RP 1-5028
RX PUBMED; 8846915.
RA Roemer T., Madden K., Chang J., Snyder M.;
RT
   "Selection of axial growth sites in yeast requires Ax12p, a novel plasma
RT membrane glycoprotein";
RL
    Genes Dev. 10(7):777-793(1996).
XX
RN [2]
RP 1-5028
RA Roemer T.;
RT ;
RL Submitted (22-FEB-1996) to the INSDC.
RL Biology, Yale University, New Haven, CT 06520, USA
```

Header

DNA sequence formats

- There are a number of ways you can write, store and transmit simple one-dimensional sequence files. Some commonly used sequence file formats are shown below:
- 1) Plain sequence format

- - -

Sequence formats

2) FASTA format

• 3) EMBL format

```
D
     AB000263 standard; RNA; PRI; 368 BP.
XX
AC.
     AB000263;
XX
     Homo sapiens mRNA for prepro cortistatin like peptide, complete cds.
DE
XX
     Sequence 368 BP;
SO.
     acaagatgee attgteecce ggeeteetge tgetgetget etcegggggee acggeeaccg
                                                                                60
     ctgccctgcc cctggagggt ggccccaccg gccgagacag cgagcatatg caggaagcgg
                                                                               120
     caggaataag gaaaagcagc ctcctgactt tcctcgcttg gtggtttgag tggacctccc
                                                                               180
     aggecagtge egggeceete ataggaggg aageteggga ggtggeeagg eggeaggaag
                                                                               240
     gegeaccee ceageaatee gegegeeggg acagaatgee etgeaggaae ttettetgga
                                                                               300
     agacettete etcetgeaaa taaaacetea eccatgaatg etcaegeaag tttaattaea
                                                                               360
     gacctgaa
                                                                               368
```

Start of sequence marked by line starting with 'SQ'
End of sequence marked by two slashes (//).

Sequence formats

• 4) GenBank format

LOCUS AB000263 **mRNA** 368 bp linear PRI 05-FEB-1999 Homo sapiens mRNA for prepro cortistatin like peptide, complete DEFINITION cds. ACCESSION AB000263 ORIGIN 1 acaagatgee attgteecce ggeeteetge tgetgetget eteegggggee acggeeaccg 61 ctgccctgcc cctggagggt ggccccaccg gccgagacag cgagcatatg caggaagcgg 121 caggaataag gaaaagcagc ctcctgactt tcctcgcttg gtggtttgag tggacctccc 181 aggccagtgc cgggcccctc ataggagagg aagctcggga ggtggccagg cggcaggaag 241 gegeaccee ceageaatee gegegeeggg acagaatgee etgeaggaae ttettetgga 301 agacettete eteetgeaaa taaaaeetea eecatgaatg eteaegeaag tttaattaca 361 gacctgaa 11

Start of the sequence marked by word ORIGINEnd of sequence marked by two slashes (//)

Protein Databases

- With increasing number of completed genome sequences from both eukaryotic and prokaryotic organisms, it is important to focus on gene products
- Variety of protein sequence databases have grown up to reflect the huge amount of data generated from the large scale analysis of these gene products.
- Protein sequence databases can be divided into universal databases storing proteins from all species and specialised protein databases storing information about specific families or groups of proteins or about proteins of specific organism.
- DNA sequences deposited in the DNA sequence database (GenBank, EMBL and DDBJ) are automatically translated to produce Sequence repositories such as TrEMBL and GenPept.

- In these databases, the protein data is stored with little or no manual intervention
- This provides a more nearly comprehensive coverage of protein sequences, but at the expense of the quality of annotation.

UniProt

- The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data
- UniProt is a collaboration between the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR)
- New protein sequence database that is the result of a merge from SWISS-PROT and PIR
- The UniProt databases are:-
 - -UniProt Knowledgebase (UniProtKB)
 - -UniProt Reference Clusters (UniRef)
 - UniProt Archive (UniParc)

UniProt Knowledgebase (UniProtKB)

- Consists of two sections:-
- 1. UniProtKB/Swiss-Prot (manually annotated)
- 2. UniProtKB/TrEMBL" (automatically annotated)
- TrEMBL (Translated EMBL Nucleotide Sequence Data Library)
- TrEMBL is a computer-annotated protein sequence database supplementing the SWISS-PROT Protein Sequence Data Bank.
- TrEMBL contains the translations of all coding sequences (CDS) present in the EMBL Nucleotide Sequence Database not yet integrated in SWISS-PROT.

Source of UniProtKB protein sequences

- Data in UniProtKB is derived from the translation of the coding sequences (CDS) which have been submitted to the public nucleic acid databases, the EMBL/GenBank/DDBJ databases
- A protein identifier ("protein_id") is assigned to the translated CDS
- Protein sequences are automatically integrated into UniProtKB/TrEMBL

Eukaryotic Pathogen Database resources (EuPathDB)

- EuPathDB <u>Bioinformatics Resource Center</u> (<u>http://eupathdb.org/eupathdb/</u>) is a portal for accessing genomicscale datasets associated with the eukaryotic pathogens in the following websites:-
- AmoebaDB: <u>http://amoebadb.org/amoeba/</u>
- CryptoDB: http://cryptodb.org/cryptodb/
- FungiDB: <u>http://fungidb.org/fungidb/</u>
- GiardiaDB: <u>http://giardiadb.org/giardiadb/</u>
- MicrosporidiaDB: <u>http://microsporidiadb.org/micro/</u>
- PlasmoDB: <u>http://plasmodb.org/plasmo/</u>
- ToxoDB: <u>http://toxodb.org/toxo/</u>
- TritrypDB: <u>http://tritrypdb.org/tritrypdb/</u>

National Cancer Institute (NCI) clinical trials Database

Website: http://www.nci.nih.gov/clinicaltrials/

- This is an important resource in cancer research.
- Using this resource, pharmacogenomic correlations between specific variants in genes like cellular tumor antigen p53 (TP53), BRAF, ERBBs and ATAD5 and anti-cancer agents nutlin, vemurafenib, erlotinib and bleomycin can be done.
- This data can be used to validate and generate novel hypothesis

Therapeutic Target Database (TTD)

Click Here To Enter TTD

W

EA

Links 🐣 🏟

This database can be used to: -Search for drugs -search for targets -Search for biomarkers Etc

Example: If you search for gene target for the anticancer drug nutlin, it will be identified as cellular tumor antigen p53 (TP53)

Website: http://bidd.nus.edu.sg/group/cjttd/

Homology Searching

- The most widely used bioinformatics protocol is to search a database for sequences similar to a candidate sequence
- If sequences are similar at some statistically significant level they share a common ancestor
- If two sequences are similar, they are likely to have a similar structure and function
- There are several algorithms for doing homology searches against databases but the standard for homology searching is the BLAST family of programs
- Another example of homology search algorithm is FastA

BLAST

- <u>Basic Local Alignment Search Tool (BLAST) is a family of programs carrying out different classes of search:</u>
- Blastn-searches a DNA sequence against a DNA database such as EMBL or GenBank
- **Blastp** searches a protein sequence against a protein database such as Swissprot or TrEMBL
- **Blastx**-searches a DNA sequence (translated in all 6 reading frames) against a protein database
- **tBlastn** Searches a protein sequence against a translated nucleotide

Task 1

- Go to NCBI and click on BLAST
- Select Standard Nucleotide BLAST by selecting "blastn" option
- To Enter Query Sequence copy and paste the sequence TCTATATTCCACATTTCTC
- In the Job Title type mscblast1
- Click on BLAST button
- The following results will be returned.

Part 1

-Will include information about the length of nucleotide sequence used for the search

-Graphic summary of color key for alignment scores for all hits (100 hits in this case)

Part 2:

-Gives description of what organism and gene/genome matches the query sequence

-Gives maximum score for each alignment and Expectation (E) value -Information of accession number of the sequence

(3,680) - vmobegi@gmail.com × 🔀 Indo-European and Asian origins for × 🔀 Indo-Europe	an and Asian or	igins for	× [8	S NCBI	Blast:m	scblast1		2	>
) blast.	ncbi.nlm .nih.go v/Blast.cgi		☆ ⊽ 6	1	• Googl	le		۶	÷	
:	Sequences producing significant alignments:									
5	Select: <u>All None</u> Selected:0									
	1 Alignments Download <u>GenBank</u> Graphics Distance tree of results						٥			
	Description	Max score	Total score	Query cover	E value	Ident	Accession			
	Gallus gallus breed Huang Lang chicken mitochondrion, complete genome	38.2	38.2	100%	0.35	100%	KF954727.1			
	Gallus gallus mitochondrion, complete genome	38.2	38.2	100%	0.35	100%	KF939304.1			
	Gallus gallus haplotype h153 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347735.1			
	Gallus gallus haplotype h157 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347734.1			
	Gallus gallus haplotype h1 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347733.1			
	Gallus gallus haplotype h133 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347732.1			
	Gallus gallus haplotype h143 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347731.1			
	Gallus gallus haplotype h146 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347730.1			
	Gallus gallus haplotype h166 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347729.1			
	Gallus gallus haplotype h130 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347728.1			
	Gallus gallus haplotype h145 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347727.1			
	Gallus gallus haplotype h213 control region, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC347726.1			
	Gallus gallus mitochondrion, complete genome	38.2	38.2	100%	0.35	100%	KF826490.1			
	Gallus gallus haplotype GP3 D-loop, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC560150.1			
	Gallus gallus haplotype GP1 D-loop, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KC560148.1			
	Gallus gallus isolate jiangshan60 D-loop, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KF059613.1			
	Gallus gallus isolate jiangshan58 D-loop, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KF059611.1			
	Gallus gallus isolate ijangshan55 D-loop, partial sequence; mitochondrial	38.2	38.2	100%	0.35	100%	KF059608.1			

Part 3:

-Shows the actual alignment giving percentage of identities -Gives the length of the subject sequence that the query sequence matches

Download 🗸 <u>Ger</u>	nBank Graphic	<u>s</u>			Vext 🔺 Previous 🛕 Descriptions
Gallus gallus bree Sequence ID: <u>gb KF</u> S	ed Huang Lan 954727.1 Leng	g chicken mitochond th: 16786 Number of I	drion, complete ge _{Aatches} : 1	nome	
lange 1: 167 to 185	i <u>GenBank</u> <u>Gra</u>	ohics	V Ne:	kt Match 🔺 Previous Matc	Related Information
Score 38.2 bits(19)	Expect 0.35	Identities 19/19(100%)	Gaps 0/19(0%)	Strand Plus/Plus	
uery 1 TCTA bjct 167 TCTA	TATTCCACATTT TATTCCACATTT	CTC 19 CTC 185			
Download 🗸 <u>Ger</u>	nBank Graphic	<u>s</u>			▼ Next ▲ Previous ▲ Descriptions
Gallus gallus mito	ochondrion, co	mplete genome			
equence ID: <u>gb KF</u>	<u>939304.1</u> Leng	th: 16/85 Number of N	Aatches: 1		Related Information
					h
lange 1: 167 to 185	i <u>GenBank</u> <u>Gra</u>	phics	Ve:	kt Match 🔺 Previous Matc	
lange 1: 167 to 185 Score 38.2 bits(19)	<u>GenBank</u> Gra Expect 0.35	Identities 19/19(100%)	▼ Ne: Gaps 0/19(0%)	kt Match 🔺 Previous Matc Strand Plus/Plus	
tange 1: 167 to 185 Score 38.2 bits(19) Query 1 TCTA Digt 167 TCTA	Expect 0.35 TATTCCACATIT IIIIIIIIIIIIIIIIIIIIIIIIII	Identities 19/19(100%) TC 19 II II TC 185	Gaps 0/19(0%)	kt Match A Previous Matc	
Range 1: 167 to 185 Score 38.2 bits(19) Juery 1 TCTA bjct 167 TCTA	Expect 0.35 TATTCCACATTT TATTCCACATTT TATTCCACATTT DBank Graphic	Drice Identities 19/19(100%) 19/19 TC 19 III 1000000000000000000000000000000000000	Gaps 0/19(0%)	tt Match A Previous Matc	✓ Next ▲ Previous ▲ Descriptions
Ange 1: 167 to 185 Score 38.2 bits(19) uery 1 TCTA bjct 167 TCTA Download ~ <u>Gen</u> Gallus gallus hap equence ID: dbIKC:	GenBank Graphic Expect 0.35 ITATTCCACATTT ITATTCCACATTT nBank Graphic lotype h153 c 347735.11 Leng	Identities 19/19(100%) CTC 19 II CTC 185 S S S S S S S S S S S S S	Gaps 0/19(0%) sequence; mitoch	ondrial	▼ Next ▲ Previous ▲ Descriptions
ange 1: 167 to 185 Score 38.2 bits(19) uery 1 TCTA bjct 167 TCTA Download ~ Gel Gallus gallus hap equence 10: gblKC: tange 1: 176 to 194	GenBank Gra Expect 0.35 ITATICCACATTT ITATICCACATTT InBank Graphic lotype h153 c 347735.1] Leng GenBank Gra	bhics Identities 19/19(100%) TC 19 II 1 SC 185 S S pontrol region, partial th: 540 Number of Mar	€ Ne: Gaps 0/19(0%) sequence; mitoch tohes: 1	ondrial	▼ Next ▲ Previous ▲ Descriptions Related Information

Task 2

- To Enter Query Sequence copy and paste the sequence AGGACTACGGCTTGAAAAGC
- In the Job Title type mscblast2
- Click on BLAST button
- The following results will be returned.
- Note the graphic color here is blue (maximum score of 40-50) whereas in task 1 it was black (<40).

Graphic for alignment scores

) 🕘 blast.ncbi.nlm. nih. g	gov/Blast.cgi			☆ マ C 🛽 🗧 - Google	, م
Edit and Resubmit	Save Search Strategies	► Formatting options	▶ <u>Download</u>	You Tube How to read this page	Blast report descriptio
mscblast2					
RID Query ID Description Molecule type Query Length	H40BFT1J014 (Expires o Icl 60939 None nucleic acid 20	n 03-02 22:49 pm)	Database Name Description Program	nr Nucleotide collection (nt) BLASTN 2.2.29+ Þ <u>Citation</u>	
Other reports: D	Search Summary [Taxor	omy reports] [Distand	e tree of results]		
	New Desig	ning or Testing PCR Pri	mers? Try your search in Primer-I	BLAST. Go	
∃ <u>Graphic Sumn</u>	nary				
		Distribution of 400 Pl	ant Lite on the Owner Service		
	Mouse-over to	show define and score	s click to show alignments	æ@	
		Show deline and Scole.	r key for alignment scores		
		40 40-50	50-80 80-2	00 >=200	
	Query I 1	1 4			
			• 1 <u>2</u>	10 20	

Task 3

• To Enter Query Sequence copy and paste the sequence aattttattt tttaacctaa ctcccctact aagtgtaccc cccctttccc ccccaggggg ggtatactat gcataatcgt gcatacattt atataccaca tatattatgg taccggtaat atatactata tatgtactaa acccattata tgtatacggg cattaatcta tattccacat ttctcccaat gtccattcta tgcatgatcc aggacacact cattcaccct ccccatagac

- In the Job Title type mscblast3
- Click on BLAST button
- The following results will be returned.

Part 1: -Query length i.e 240 is given -Note that the graphic color is now red for all the hits (i.e maximum score of >=200)

Part 2:

-Now maximum score for each top hit alignment is 444 and Expectation (E) value is 2e-121

Why do you think maximum score is higher and E lower compared to the previous (i.e Task 1 and 2)?

The longer the query sequence the more the confidence associated with its match. In other words it is unlikely that the sequence matched by chance.

) NO	CBI Blast:mscblast3 - Mozilla Fir	efox									đ	×
ile i MInt	<u>E</u> dit <u>v</u> iew Hi <u>s</u> tory <u>B</u> ookmai box (3,680) - vmobegi@g ×	S Indo-European and Asian o ×	Indo-European and Asian o ×	NCBI BI	ast:mscl	blast3	×	S Gall	us gallus breed	Huang	L ×	+
()	Blast.ncbi.nlm.nih.gov/Blas	it.cgi		-	☆▼	C 8	Googl Googl	e	-	٦	ŧ	Â
	Descriptions											
	Sequences produc	ing significant alignments:										E
	Select: <u>All None</u> S	elected:0										
	🕌 Alignments 🔚 🗆	Iownload <u>GenBank</u> <u>Graphics</u> <u>D</u>	istance tree of results			-			0			
		Description		Max score	Total score	Query cover	E value	ldent	Accession			
	Gallus gallus br	eed Huang Lang chicken mitochondri	on, complete genome	444	444	100%	2e-121	100%	KF954727.1			
	Gallus gallus ha	plotype h153 control region, partial se	quence; mitochondrial	444	444	100%	2e-121	100%	KC347735.1			
	Gallus gallus ha	plotype h146 control region, partial se	quence; mitochondrial	444	444	100%	2e-121	100%	KC347730.1			
	Gallus gallus ha	plotype h166 control region, partial se	quence; mitochondrial	444	444	100%	2e-121	100%	KC347729.1			
	Gallus gallus ha	plotype h130 control region, partial se	quence; mitochondrial	444	444	100%	2e-121	100%	KC347728.1			
	Gallus gallus ha	plotype h145 control region, partial se	quence; mitochondrial	444	444	100%	2e-121	100%	KC347727.1			
	Gallus gallus ha	plotype GP3 D-loop, partial sequence	; mitochondrial	444	444	100%	2e-121	100%	KC560150.1			
	Gallus gallus is	olate jiangshan60 D-loop, partial sequ	ience; mitochondrial	444	444	100%	2e-121	100%	KF059613.1			
	Gallus gallus is	plate KNC_4 D-loop, partial sequence	; mitochondrial	444	444	100%	2e-121	100%	KC218506.1			
	Gallus gallus is	plate KNC_5 D-loop, partial sequence	; mitochondrial	444	444	100%	2e-121	100%	KC218507.1			
	Gallus gallus is	plate KNC 18 D-loop, partial sequenc	e; mitochondrial	444	444	100%	2e-121	100%	KC218520.1			
	Gallus gallus is	plate KNC_6 D-loop, partial sequence	; mitochondrial	444	444	100%	2e-121	100%	KC218508.1			
	Gallus gallus is	plate KNC_11 D-loop, partial sequenc	e; mitochondrial >qb[KC218528.1] Ga	<u>allı</u> 444	444	100%	2e-121	100%	KC218513.1			
	Gallus gallus is	plate KNC_23 D-loop, partial sequenc	e; mitochondrial >qb KC218542.1 G	<u>allı</u> 444	444	100%	2e-121	100%	KC218525.1			
	Gallus gallus is	plate KNC 39 D-loop, partial sequenc	e; mitochondrial >gb[KC218565.1] G	<u>allı</u> 444	444	100%	2e-121	100%	KC218541.1			
	Gallus gallus is	plate MAZF5 D-loop, partial sequence;	mitochondrial	444	444	100%	2e-121	100%	<u>JQ407886.1</u>			+
									. 0. 0. 4	, 7:	05 PN	A R

Task 4

- Go to NCBI BLAST. Perform homology search for the sequence
- AATAAAGATT GTAAAATGAT AATTTGGTTT ATTCAACCAA
 CGATTTTTTA CATAATTTTT
- 1. What is the maximum score and E for the top hit?
- 2. Which organism and what gene does this sequence belong to?
- 3. What is the length of the gene?
- 4. On what chromosome is the gene located?
- 5. From which isolate has the sequence been generated?

BLASTp

- Used to search a protein sequence against a protein database such as Uniprot.
- -If your DNA sequence is coding, you can translate it and use blastp to search protein database. Otherwise you can retrieve protein sequence from database.

-You can access BLAST in many different ways and many different sites. The default parameters may be significantly different, the databases may not be updated on the same schedule as such may be significantly different in size or level of redundancy.

Lecture 2

Protein structure and function prediction

Expert Protein Analysis System (ExPASy)

- ExPASy is the <u>Swiss Institute of Bioinformatics</u> (SIB) Bioinformatics Resource Portal which provides access to scientific databases and software tools (i.e., resources) in different areas of life sciences including proteomics, genomics, phylogeny, systems biology, population genetics, transcriptomics etc
- It was initially a protein and proteomics server dedicated to the analysis of protein sequences and structures
- In this course we will consider just a few tools but you will note that there are several tools available here that may be useful in other applications

Signal peptides

 SignalP predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.

Exercise 1

- Go to Uniprot http://www.uniprot.org/
- In Search in box select Protein Knowledgebase (UniProtKB) and in Query box type "human beta-defensin 1"
- Select entry P60022 and entry name DEFB1_HUMAN
- Click on the entry P60022 to get information about this protein

- Scroll down to where you have protein sequence and copy the sequence
- Go to proteomics category and click on "protein modifications"
- Under tools click on SignalP http://www.cbs.dtu.dk/services/SignalP/
- This takes you to **SignalP server**
- Now paste the sequence you copied earlier to the box provided under SUBMISSION
- Use Default parameters and press Submit

Output from SignalP

Measure Position Value Cutoff signal peptide? max. C 22 0.756 max. Y 22 0.837 max.

S 14 0.968 mean S 1-21 0.925 D 1-21 0.885 0.450 YES

Name=Sequence SP='YES' Cleavage site between position 21 and 22

Exercise 2

- Go to Uniprot http://www.uniprot.org/
- In Search in box select Protein Knowledgebase (UniProtKB) and in Query box type "Insulin"
- Select entry P01308 and entry name INS_HUMAN
- Click on the entry P01308 to get information about this protein
- Follow the rest of the steps as in Exercise 1 above.

Output from SignalP

Measure Position Value Cutoff signal peptide? max. C 25 0.812 max. Y 25 0.861 max. S 11 0.993 mean S 1-24 0.917 D 1-24 0.891 0.450 YES Name=Sequence SP='YES' Cleavage site between pos. 24 and 25

>Sequence ; MatureChain: 25-110 FVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEG SLQKRGIVEQCCTSICSLYQLENYCN