ANSWERS TO ASSORTED BIOCHEMISTRY CLOZE TESTS FOR MBCHB AND BPHARM LEVEL 2

A TRIBUTE TO THE LATE PROF. HASSAN SAIDI. BSc (Anatomy), MBChB, MMed (Surg), FACS.

1. In high altitude, the human erythrocyte is capable of modifying its glycolytic pathway to the

	Luebering Rapoport pathway where 1,3-BPG a high energy substrate is isomerized to
	2,3BPG . Consequently, this compound acts as a negative allosteric effector of the oxygen
	affinity of haemoglobin. It decreases the oxygen affinity of deoxyhaemoglobin thereby
	promoting the release of oxygen into the peripheral tissue. However this glycolytic
	modification deprives the cell of 2 molecules of ATP generated by the phosphorylation
	reaction.
2.	Phospholipids are the most abundant lipids in the plasma membrane. The steroid
	cholesterol has different effects on membrane fluidity at different temperatures such as at
	37°C the cholesterol movement while at low temperatures (cold) it by
	preventing tight packing in lipid composition of cell membranes in many species
	appear to be adaptations to specific environment conditions. A membrane is a collage of
	different proteins, often grouped together and embedded in the fluid matrix of lipid bilayer.
	proteins are bound to the surface of the membrane while proteins span the
	membrane. Membrane proteins serve several important functions namely transport ,
	receptors, enzymes, adhesion just to name a few. Glycophorin is a single transmembrane
	protein; the extracellular portion of it contains oligosaccharides which constitute the ABO
	and MN blood group determinants.
3.	For a molecule to serve as the genetic material, it must be able to,,
•	For a long time, protein was favoured to be the genetic material. Evidence
	favouring DNA as the genetic material was first obtained during the study of and
	of viral DNA into bacterial cells proved conclusively that viral DNA
	alone contains all the necessary information for production of mature viruses. In some
	viruses serve as the genetic material. In DNA/RNA strands can be renatured
	back is used to identify the chromosomal location of a DNA of interest.
4.	At the molecular level, is a segment of a DNA used to make a functional product.
	is the overall process by which the information within a gene is used to produce a
	functional product which can, in concert with environmental factors determine a
	There are various types of RNA transcripts. RNA transcripts from genes are not
	translated but form various important cellular functions for example and
	are DNA sequences located upstream of the site where transcription of a gene
	starts. Termination of transcription in eukaryotes in complex due to complexity of the
	organisms involved. However in E. Coli, and are two types of mechanisms in
	termination of transcription known to occur. In eukaryotes, structural genes have three
	features,, and commonly found in most promoter site.
	Transcription factors are known to bindor elements found in one of the
	features to control the rate of transcription. Factors that control gene expression can be
	divided into two based on their locationDNA sequences that exert their effect only
	over a particular gene and that controls gene(s) in a distant location.
5.	There are three types of RNA modification in eukaryotic organisms namely,
	, and The transcription of structural genes produces long transcription
	known as One of the benefits of genes with introns is a phenomenon
	called The biological advantage of this phenomenon is that two or more
	can be derived from a single Mature RNA has a covalently attached to

	their 5' end a process referred to as The cap-binding protein that recognizes this
_	process plays key roles in the, and
6.	is a change in the genetic material. There are two types of base substitutions
	and which can lead to twelve different base substitutions.
	mutations alters the pen reading frame (ORF) affecting subsequent polypeptide to
	be translated. Mutation can beor induced. Mutagen such as X-rays is known to
	induce mutation through while UV induces mutations through Tay-sach's
	disease is an autosomal disease where mutations in the gene encoding
	enzyme occurs. The test provides a simple and inexpensive method for detecting
	the mutagenicity due chemicals.
7.	Three types of hormones are steroid , peptide and amine . They differ on the basis of storage
	and cellular mechanism of action. Peptide hormones are synthesized as pre-prohormones
	which undergo post-translational modification to pro-hormones then hormones . All steroid
	hormones are derived from cholesterol.
8.	Examples of eicosanoids are prostaglandins , leukotrienes and thromboxane . They have
	roles in inflammation and regulating cell growth . Prostaglandins and related compounds
	are transported out of the cells that synthesize them. Most prostaglandins affect other cells
	by interacting with membrane G-protein coupled receptors. Depending on the cell type, the
	activated G -protein may stimulate or inhibit formation of adenylyl cyclase , or may activate
	a phosphatidyl-inositol signal pathway leading to intracellular Ca²⁺ release. Different
	receptors for a particular prostaglandin may affect different intracellular cascades.
9.	Viral glycoproteins contain short cytoplasmic tails. These glycoproteins have hydrophobic
	segment of amino acids for anchoring into the The glycoproteins have
	relatively large The ecto-domains are extensively to prevent aggregation
	of Glycosylation attractsand reduces Some of these proteins are
	palmitoylated onresidues. Most of the envelope proteins are type
	meaning that the N-terminus of the protein faces while the C terminus is near the
	anchor domain.
10.	The karyotype of a man with Down syndrome is while the condition known as
	is defined by 46, XX,5p . The ZW system of sex determination is found in
	in which the female is thesex while the male is thesex. The haploid-diploid
	system of sex determination exists in and in which the male and female
	members areand respectively hypothesis is responsible for the
	dosage compensation in the expression of the X chromosomes in female mammals. Genes
	that are located very near each other on the same chromosome are said to be
	Cross involves F1 x homozygous recessive parent and can be used to estimate
	how widely genes are separated on a chromosome.
11.	Endocrinology is concerned with the study of the biosynthesis, storage, chemistry and
	physiological functions of hormones and with the cells of the endocrine glands and organs
	that secrete them. Hormones have different functions and modes of action; one hormone
	may have several effects on different body organs, and conversely one organ may be
	affected by more than one hormone . Hormones act by binding to specific receptors in the

	target cells . Griffin and Ojeda identified three chemical classes of normones based on their
	chemical composition namely; 1. Peptide 2. Amine 3. Steroid .
12.	Interferons are naturally occurring They are secreted by eukaryotic cells in
	response to, and other biological inducers. Structurally, they are part of
	thefamily which are characterized by an amino acid chain that is
	amino acids long. The antiviral activity of interferons is mediated by three pathways. These
	are, and Mx pathways. MxA is produced during viral infections
	and inhibits viral replication at the level of by binding to susceptible viral in
	the cytoplasm and preventing their movement into the nucleus.
13.	Bacterial unlike animal cells are surrounded by a cell wall that confers structural support.
	Thus due to high concentration of metabolites , osmotic pressure may reach as high as 20
	Atmosphere in bacterial cell and this can lead to lysis in ordinary media. Some bacteria are
	resistant to penicillin because they secrete penicillinase enzyme that cleaves the amide
	bond in the β -lactam of natural penicillin to form penicillanic acid which is inactive as
	antibiotic.
14.	One of the pathways by which the antiviral activity of interferon is mediated is the
	In this pathway, PKR is activated by binding to Once activated,
	PKR phosphorylates This then inhibits translation. PKR can also activate
	which leads to increasedandlevels. Increased PKR activity can also
	induceby anddependent mechanisms.
15.	The receptors for amine and peptide hormones are located on membranes of target cells
	because hormones are not lipid soluble and cannot pass through cell membrane. The
	receptors for steroid hormones are located within one cytoplasm or nucleus because these
	kind of hormones are lipid soluble and can easily pass through cell membranes and enter
	cytoplasm. The receptors of amine hormones are also located on the membranes of the
	target cells.
16.	A Xenobiotic is a compound that is foreign to the body. It can be either endogenou s or
	exogenous depending on its origin within or outside the body respectively. Its metabolism
	occurs mainly in 3 phases. The major reaction is redox catalyzed by a family of coenzymes
	known as cytochrome p450 which promote a reaction involving substrate drug and
	molecular oxygen as well as coenzymes known as NADPH acting as a reducing agent
17.	A also called PrPsc is an agent composed of only an
	in a misfolded form. This is in contrast to all other known infectious agents that contain
	The word prion, coined in 1982 by, is derived from the words protein and
	infection. Prions are responsible forin a variety of mammalian species, including
	, also known as "mad cow disease" in cattle. In humans, prions cause,
	, and diseases among others.
18.	Hormones are signalling molecules synthesized within the body that regulate and control
	physiological and biological functions by acting on receptors located on target cells. They
	can be produced by specialized secretory vesicles that are either localized in secretory cells
	or within organs that have other primary functions. The hormones are classified into three
	categories steroid , peptide and amine hormones. They can also be distinguished as lipid
	soluble and water soluble hormones.

- 19. Most hormones are stored, often in large quantities, in their **glands** of origin, a factor that facilitates their original **isolation** and **characterization** (except steroids). Proteins and **peptides** are tyrosine derivatives, **epinephrine** and **norepinephrine** are stored as dense granules in membrane bound vesicles and are secreted in response to an external stimulus by the process of **exocytosis**. Synthesis of hormones must be coupled in some way with **secretion** so that cells can replenish their supply of hormones. In general, the same cellular events that signal secretion also signal **synthesis**. In addition, some cells may be able to monitor how much hormone is stored and adjust rates of synthesis and **degradation** accordingly. In contrast to the peptide hormones, there is little storage of steroid hormones in their cells of **origin**.
- 20. Myosin has two **globular** heads and two **filamentous** tails. It is an asymmetric hexamer consisting of one pair of **heavy** chains and two pairs of **light** chains.
- 21. Hormone receptors are cellular **proteins** that bind with high affinity to **ligands** and are altered in shape and **size** by binding; they exist in limited **forms**. Binding to hormone is non-covalent and **temporary**. Hormone levels rise and fall due to **release** of hormone and due to degradation and clearance of hormone. Hormones are classified into 3 main types: **amine**, **peptide**, and **steroid**. They differ on the basis of **synthesis**, storage, release, transport and cellular mechanism of action.

22.	Peptide hormones are synthesized as that undergo post-translational
	modification to then Cellular mechanism of action for peptide
	hormones require 2 nd messenger system. Steroid hormones are all derived
	from Amine hormones are derived from one or amino acids.
	Catecholamines behave like hormones while thyroid hormones behave like
	hormones. Peptide hormones havehalf-life while steroid hormones
	have half-life.
23.	A chemical modification on a compound by an organism is known as while a
	is a foreign chemical substance found within an organism and which can be
	removed through a process known as that includes a process of
	biochemical modification of pharmaceutical substances specifically known as
	Drug metabolism is divided into two main phases namely and which are
	involved respectively in the and of the drug and their metabolites.
24.	Fill in the missing information (use I ^A , I ^B , i)

Blood type of the child	Genotype(s) of the	Possible mother's	Possible father's
	child	genotype(s)	genotype(s)
В			
0			

In the table below, fill in the information on chromosomal basis of sex determination in the animal kingdom.

No.	System used	Male chromosomes	Female chromosomes	Example?
1.				
2.				
3.				

4.						
25. Fill in the missing info	rmation o	n human gene	tic conditi	ons/disor	ders	
Type of defect	Name t	he genetic	State	the karyo	tyne	Mention one symptom
Type of defect	disorde	_	State	the karyo	туре	Wention one sympton
A male with extra	0.00.00					
chromosome 21						
A female with only one						
X chromosome						
			47, X	ΚY		
	Cri-du-	chat				
26. In the animal kingdom	n, fill in th	e missing infor	mation or	chromos	omal basis	of sex
determination.	,					
In which animal?	Syster	n used	Mal	e chromos	omes	Female chromosome
	7,000	4554				XX
Birds						
			ХО			
			Haploid			
	J			-		
Туре		Main RNA pro	oduct		Effect of	f α-amanitin
Polymerase I		Wall MVA pro	oduct	_	Litecto	a amamum
Polymerase II						
Polymerase III						
1 Olymerase m						
27. PCR is a technique wh				-		
DNA, in order to prod		_				-
properties of DNA pol	-		_			
example, DNA polyme	-					
moves from one direc			_		_	
targets specific seque	-					g, optimal
temperature varies ba	-					
28. Eukaryotic cells regula	ate gene e	expression to m	naintain _		in the orga	nism. Control of
these gene expression	-				-	
		he DNA. To ful		-	-	
regulation utilizing va						
are knowr				es have va	rious	depending
on the and	d t	_of expression	١.			

29. Using availab	le DNA sequences, genetic	ists can study genes in a di	rect approach
called	The identification of pr	otein coding genes within	DNA sequences in a
database is ca	alled	is the systemation	study of all proteins
		it alleles at a locus, as in th	
as	mating incre	eases the chance of offspri	ng getting an autosomal
recessive gen	etic condition. Sickle-cell c	lisease is caused by the sub	stitution of the amino
acid in the β-l	haemoglobin protein in the	e red blood cells in which g	lutamate is replaced with
In g	enetic terminology, ψ is a	sign used to denote	The karyotypes 45
XO, 46XX5p a	nd 47 XXY stand for which	conditions respectively	, and
Wri	te the karyotype of a hum	an male with an extra chro	mosome 18 and a
deletion in sh	ort arm of chromosomes 5)	
30. Virus attachm	nent consists of specific bir	nding of ato a c	cellular receptor molecule.
Target recept	or molecules on cell surfac	ces may be either	or residues
present on gl	ycoproteins or	Virus receptors fall into m	any different classes;
these include	: molecules,	receptors, tran	smembrane transporters
and	Viruses have subve	rted molecules required fo	r normal cellular
functions. For	r example, the major Huma	an Rhinovirus (HRV) recept	or molecule, is
	, which is an adhesion mo	ecule whose normal functi	on is to bind cells to
adjacent subs	strates. The	_ spikes are responsible fo	r binding the influenza
virus receptor	r, which is		
31. Three babies	were mixed up in a hospit	al. After consideration of the	ne data below, which of
the following	represent the correct bab	y and parent combinations	
	Couple #1	Couple #2	Couple #3
Parent's blood group	A and A	A and B	B and O
Baby's blood group	В	0	AB

In a table format, write all possible genotypes of the parents in couples.

- (i) The parents in the three couples
- (ii) The babies for the three couples
- (iii) From (i) and (ii), above, assign the babies to their biological parents and justify.
 - 32. Choose the correct answer in the last column to the statement given in column 1 and insert the answer (letter) in the middle column.

Statement	Answer (letter only)	Choose the answer?
Flexibility in the codon		A. Alternative splicing
anticodon interaction at the 3'		
nucleotide in the codon		
Not all the individuals with a		B. Incomplete penetrance
mutant allele have a mutant		
phenotype in domination trait		
Removing base sequences		C. Codon
corresponding to introns from		
the primary transcript		

The strand of DNA that h	as the		D.	Reading frame
same base sequence as t	he			
primary transcript				
A group of three mRNA b	ases		E.	Degeneracy of the
signify one amino acid				genetic code
Most amino acids are not			F.	Nonsense codon
specified by a single code	on			
			G.	
Using the information in			Н.	Initiation codon
nucleotide sequence of a				
of DNA to specify the nuc				
sequence of a strand of R	INA			
AUG in a particular cont	ent		I.	Template strand
7 to C iii a particolar conta			J.	· op.a.coo.a.ra
The linear sequence of a	amino			Coding strand
acids in the polypeptide				
corresponds to the linea				
sequence of nucleotide				
the gene	'			
Addition or deletion of a	9		L.	Intron
number of base pairs ot	her than			
three into the coding se	quence			
			М	. RNA splicing
			N.	Transcription
			0.	Translation
			P.	Wobbling
			Q.	
33. Peptide hormones ar				
later (1) is converted	into and then	Peptide	hormor	nes are lipophobic,
therefore their messa	ages get into target cell b	initiating the synt	thesis of	The
second messenger (4) system is most commor	to target	Ster	oid hormones are
driven from	Amide hormones are d	iven from	or	amino
acids. There are three	- e groups of amine hormo	nes; melatonin,		, which behave like
	nd which beha			
34. ABO blood group is v				age. The following
	ypes of various mother-c		-	-
possible blood types				
possible blood types	for the father.			
Blood type of the child	Blood type of the moth	er Possible	e blood t	ypes of the father
0	0			
A	В			
В	0			
ΔR	Δ		_	

No.

2.

35.	In humans, the prion is a product of a human gene termed the gene. This gene is
	found on chromosome The gene contains exons separated by
	introns. The spliced mRNA contains an open reading frame (ORF) or protein coding
	region which is translated into precursor protein. This precursor undergoes
	several modifications to become the prion protein denoted In normal
	cells, only the form of the protein in the neural cell membrane protein is
	synthesized. Its function is to sequester ions. In abnormal cells, the PrP 27-30
	produced from the PrP 33-35 protein triggers a series of reactions that produce
	more proteins, showing that this mutant protein induces its own synthesis.
36.	. In intact peptidoglycan, N-acetylglucosamine and N-acetylmuramic acid alternate in
	sequence to form a linear glycan chain and the peptide bridge cross-links residues on
	different glycan strands by forming bond with the carboxyl group of
	while the carboxyl group of bridge forms a bond with the side
	chain amino group of L-lysine.
37.	Plasma membrane exhibit permeability allowing some molecules to cross it more
	easily than others. Phospholipids have and hydrophobic regions. Membrane
	fluidity is affected by two factors namely and in lipid
	composition of all membranes of many species appear to be adaptations to specific
	environmental conditions. Membrane proteins determine most of the membrane specific
	functions namely, and Some diseases are caused by
	in specific transport systems, for example the kidney disease
38.	Understanding the molecular nature of mutation is a deeply compelling area of research in
	medicine is a change in a single base pair while mutations are those
	base substitutions in which an amino acid change does occur. Mutations can occur
	spontaneously or be induced. The most common cause of spontaneous mutations can arise
	due to that involves removal of a from the DNA. Several human
	genetic diseases are caused by an unusual form of mutation called, a
	phenomenon that refers to a sequence of 3 nucleotide that increase from one generation to
	the next. An enormous array of agents can actthat permanently alters the
	structure of the DNA. Chemical mutagens occur in three main forms that
	covalently modify the structure of nucleotide, that cause flat planar structure, and
	that becomes incorporated into daughter strands during DNA replication. Since
	mutations can be quite harmful, organisms have developed ways to repair damaged DNA.
	repair remove large defects of damaged DNA such as thymine dimers.
39.	Membrane and organelle protein contain in their amino acid sequence. Proteins
	targeted to the nuclear or mitochondria are synthesized on ribosomes as soluble
	polypeptides disease is caused by a defect in lysosomal targeting. Defect in
	peroxisomal targeting is known to cause syndrome that affects mainly
	cardiovascular and renal systems and gets the ribosome with
	secretory protein mRNA's to bind to the endoplasmic reticulum membrane.
	powers dissociation of SRP, SRP receptors from transcolon controls the insertion of
	nascent secretory proteins into the transcolon. Most proteins synthesized in the rough ER
	are by a core oligosaccharide that is linked to residues.

40.	Controlling gene expression is often accomplished by controlling transcription initiation.
	proteins bind to DNA to either block or stimulate transcription motifs
	are regions of regulatory proteins which bind to the DNA. Genes involved in some metabolic
	pathway are organized in In prokaryotes contains genes for use of
	lactose as an energy source. In presence of lactose, an molecule binds to the
	protein which can no longer bind to operator. In eukaryotes, controlling the
	expression requires factors that bind to the region of the gene.
	Eukaryotic structure too plays role in gene regulation. Chromatin structure begins with
	organization of the DNA into that blocks RNA polymerase II from gaining access to
	promoters. In addition of DNA or Histone proteins is associated with control of
	gene expression.
41.	Gout is a disease affecting the joints and is caused by elevated concentration of uric acid in
	the blood and tissues. The joints become inflamed, painful and arthritic. The kidneys are
	also affected, as excess uric acid is deposited in the tubules. Gout occurs predominantly in
	males (males/females). Its precise cause is not known but it often involves an under-
	excretion of uric acid . Gout is effectively treated by a combination of nutritional and drug
	$the rapies.\ Foods,\ especially\ rich\ in\ \textbf{purine},\ such\ as\ liver\ or\ glandular\ products,\ are\ withheld$
	from diet. Major alleviation of the symptoms is provided by the drug allopurinol which
	inhibits the enzyme xanthine oxidase that catalyzes the conversion of purines to uric acid.
	The compound is a substrate analog of hypoxanthine , and is converted to xanthine . When
	the enzyme is inhibited, the excreted products of purine metabolism are hypoxanthine and
	xanthine , which are more water soluble than uric acid and less likely to form crystalline

42. Write the answer to the statement in the first column

No.	Statement	Answer
1.	The nitrogenous base in Inosine 5'	
	monophosphate	
2.	Nucleotide NOT utilized for RNA biosynthesis	
3.	Deficient enzyme in Lesch-Nyhan syndrome	
4.	The enzyme that seals gaps to make a	
	continuous DNA strand	
5.	A compound with anti-folate properties	
6.	Deficient enzyme in severe combined	
	immunodeficiency disease(SCID)	
7.	The nucleic acid to which amino acids are	
	activated?	
8.	The opened-up part of DNA double helix	
	during replication	
9.	The pyrimidine nucleotide from which the	
	others are synthesized from	
10.	Enzyme that lays a primer during replication	

deposits. Two forms of gout are identified as **pseudogout** and **tophaceous** gout.

43. Fill in the missing information in the table below

	Disease	
Defective enzyme	Disease	
Glucose 6- phosphatase	McArdles	
α 1-4 glucosidase (lysosomal)	IVICATULES	
a 1-4 glucosidase (lysosoffial)	Andersen's	
Glycogen phosphorylase (liver)	Aliderseits	
divergen phospholylase (liver)	Cori's	
Phosphofructokinase	COITS	
r nosphon actorinase	Type O	
Phosphorylase kinase b	Туре О	
Thosphorylase killase b	Type 1X	
	Type IX	
amino acidsa with ammonia at the gam byenzyme. The	and respectively ma-carboxyl group formed f his reaction requires ATP and	nesis is dependent on the essential y. Glutamine contains an amide linkage from in a reaction driven d serves as a major step for
	•	for protein synthesis.
45. Match the information in	•	iate statements in table B (write the
45. Match the information in	table A to the most appropr	iate statements in table B (write the
45. Match the information in number in the answer columb	table A to the most appropr umn. Only one answer is req	iate statements in table B (write the juired in each case)
45. Match the information in number in the answer columbter in the answer colu	table A to the most appropr umn. Only one answer is req	iate statements in table B (write the juired in each case) Table B
45. Match the information in number in the answer color Table A 1. Traslocation	table A to the most appropr umn. Only one answer is req	iate statements in table B (write the juired in each case) Table B Breaks chromosomes segme
45. Match the information in number in the answer columbter. Table A 1. Traslocation 2. Transversion	table A to the most appropr umn. Only one answer is req	iate statements in table B (write the juired in each case) Table B Breaks chromosomes segme Protein biosynthesis
 45. Match the information in number in the answer color number in the answer color number. Table A Traslocation Transversion Translation 	table A to the most appropr umn. Only one answer is req	iate statements in table B (write the juired in each case) Table B Breaks chromosomes segme Protein biosynthesis Found on processed mRNA
45. Match the information in number in the answer color number in the answer color number. Table A 1. Traslocation 2. Transversion 3. Translation 4. Deletion	table A to the most appropr umn. Only one answer is req	Table B Breaks chromosomes segme Protein biosynthesis Found on processed mRNA Present on lagging strand Shifts the reading frame
45. Match the information in number in the answer color number in the answer color number. Table A 1. Traslocation 2. Transversion 3. Translation 4. Deletion 5. cAMP	table A to the most appropr umn. Only one answer is req	Table B Breaks chromosomes segme Protein biosynthesis Found on processed mRNA Present on lagging strand Shifts the reading frame A point mutation with a puris
45. Match the information in number in the answer color number in the answe	table A to the most appropr umn. Only one answer is req	Table B Breaks chromosomes segment Protein biosynthesis Found on processed mRNA Present on lagging strand Shifts the reading frame A point mutation with a puring replaced by
45. Match the information in number in the answer color number in the answe	table A to the most appropr umn. Only one answer is req	Table B Breaks chromosomes segme Protein biosynthesis Found on processed mRNA Present on lagging strand Shifts the reading frame A point mutation with a puring replaced by Chromosomal alteration
 45. Match the information in number in the answer color number. Table A Traslocation Transversion Translation Deletion cAMP 7-methylguanosine Tethidium bromide RNA directed 	table A to the most appropr umn. Only one answer is req	Table B Breaks chromosomes segment Protein biosynthesis Found on processed mRNA Present on lagging strand Shifts the reading frame A point mutation with a puring replaced by Chromosomal alteration Inhibits replication

binding to P-subunit on the enzyme.

polymerase binds to specific sequences on DNA known as the ______. In E coli, the holoenzyme is made up of ______ subunits of which the subunit is not required for catalytic activity but is necessary for ______. Unlike DNA polymerase, this enzyme lacks activity and this results in lower fidelity. The inhibitor______ prevents transcription by

47. During DNA replication, the DNA double helix need to be unwound by **DNA helicase**, the +ve supercoils introduced by unwinding needs to be removed by **single stranded DNA binding proteins** and the unwound single strand need to be stabilized by **topoisomerase 2**. The enzyme **primase** which is a DNA dependent **RNA** polymerase, must synthesize the primers. Elongation requires **DNA** polymerase. The 5'-3' exonuclease activity is done by **DNA polymerase** and is necessary for maintaining high **accuracy** during the process.

PROF. SAIDI WAS A CELEBRATED GENERAL AND LAPARASCOPIC SURGEON AT KENYATTA NATIONAL HOSPITAL AND AGA KHAN HOSPITALS, A FELLOW OF THE AMERICAN COLEGE OF SURGEONS AND MEMBER OF THE KENYA MEDICAL ASSOCIATION. CHAIRMAN DEPARTMENT OF HUMAN ANATOMY, PRESIDENT SURGICAL SOCIETY OF KENYA, EDITOR IN CHIEF OF THE ANNALS OF AFRICAN SURGERY JOURNAL, ASSOCIATE DEAN SCHOOL OF MEDICINE UNIVERSITY OF NAIROBI, BOARD CHAIR NARIOBI SURGICAL SKILLS CENTRE.

We celebrate his life legacy for being an excellent teacher of Anatomy, with a thirty-year experience in instruction and teaching Human Anatomy at the University of Nairobi, Aga Khan University Nairobi and University of Pennsylvania. He has mastery of Embryology, Gross Anatomy, Histology and molecular biology, with surgical anatomy as his pet subject. Having taught over 4000 undergraduate medical students, supervised over 40 B.Sc. Anatomy students, 30 Master of Medicine Surgery students, and 4 Master of Anatomy students. He mentored many renowned surgeons, doctors and clinical officers.

Prof. Hassan Saidi was able to publish over 60 high impact peer reviewed articles in local and international journals. His research activity focused on clinical anatomy in all its aspects, trauma, oncology and surgery of the digestive tract. He published a book on histology and was in the process of publishing a text book of Surgical Anatomy. Prof. Hassan Saidi held many leadership roles in the University of Nairobi, initially as a course coordinator and rising to become the chairman of thematic areas within the department. He was the substantive Chairman of the Department of Human Anatomy until the time of his death. Prof. Hassan Saidi was also the associate dean, Preclinical departments of the University of Nairobi. During his tenure as a chairman, he shepherded the establishment of the Nairobi Surgical Skills Centre, publication of the Kimani's Histology Text and Atlas, Establishment of the Anatomy Journal of Africa, supported staff development, training and promotion as well as supporting many local and international staff retreats.

Prof Hassan indeed had many friends. He definitely did not know all of them, but yet he would never deny any genuine person seeking assistance. Taking time to engage with different age groups and this he did effortlessly. An opportunity to watch football, play some basketball or just have a 'chat' (always very insightful and refreshing) over some coffee snack was a sought-after opportunity by many. In his 36hr day, he would still find time to call up and catch up with his friends, his objective to savour every moment with friends to improve them in one way or another. What better HE WAS!

Prof. Hassan Saidi was married, with three sons. He was actively involved in charity and volunteer activities through HAIBA foundation and other charity groups. He was a mentor, a great teacher, researcher and a surgeon. He surely fought a good fight and finished the race. He will be missed by many but his legacy lives on forever in our hearts and lives, till always and forever!!!

WHAT ARE YOU DOING TO EMULATE THE KIND OF LIFE PROF. SAIDI LIVED? IN ALL THE ABOVE CITED ACHIEVEMENTS, AND THE IMPACT HE GENERATED IN ALL WALKS OF LIFE, DO YOU THINK IT'S POSSIBLE TO LEAVE A TRAIL OF THE SAME MAGNITUDE OF EXQUISITION?

YES IT IS! START WITHIN YOUR SPHERE OF INFLUENCE. LOOK FOR A WAY TO BLESS AND MOULD YOUR FELLOW MEDICS. STUDY MEDICINE WITH PASSION, TRANSFORMATIVE PURPOSE AND PURSUE EXCELLENCE WITH DISTINCTIONS IN ALL YOU DO. ABOVE IT ALL, PURSUE GOD WITH ALL OF YOUR BEING, WHILE PLUGGING INTO HIS SOURCE TO HELP YOU ACHIEVE IT ALL IN KEEPING PROF. SAIDI'S LEGACY ALIVE!!!

ALL THE BEST IN YOUR STUDIES AND UPCOMING EXAMS AS GOD LEADS YOU INTO THE GREAT DOCTORS HE ORCHESTRATED YOU TO BE!!!

ISAIAH 58:11

WHERE GOD LEADS, HE PROVIDES. WHERE HE GUIDES, HIS GRACE IS SUFFICIENT!