Vaccination 1

Objectives

- define vaccines and their importance
- discuss current vaccines, their mechanism(s) of protection, and the proof
 - review of B cell biology
- discuss issues of timing and location of protection, herd immunity, vaccine delivery, and vaccines for babies and elderly
- review the types of vaccines (whole vs. subunit), and their pros and cons

Vaccination

- "world's most cost-effective medical procedure for preventing morbidity and mortality caused by infectious disease.."
- represents one of the most important advances in the history of public health
- currently about 20 vaccines licensed for use.

Successful vaccines

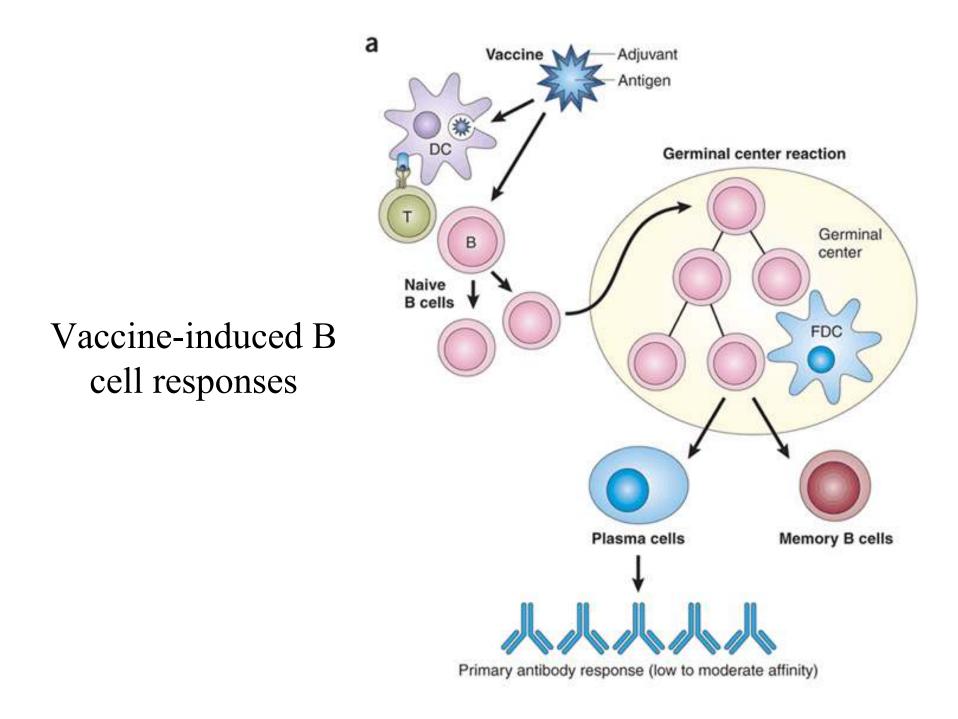
Disease	Max. cases (year)	Cases in 2004
Small pox	over 300m	eradicated 1979
Diptheria	206,939 (1921)	0
Measles	894,134 (1941)	37
Mumps	152,209 (1968)	236
Pertussis	265,269 (1934)	18,957
Polio (paralytic)	21,269 (1952)	0
Rubella	57,686 (1969)	12
Tetanus	1,560 (1923)	26
H. influenza B	~20,000 (1984)	16
Hepatitis B	26,611 (1985)	6,632

Sources: MMWR 53:1213 (2005), Mandell 1995, Abbas 2007

A vaccine..

- "....is a preparation of microbial antigen, often in combination with adjuvants, that is administered to individuals to induce protective immunity against infection"
- Passive vs. Active vaccination
 - passive: antibodies are given directly
 - <u>active</u>: immune response is induced by the host

An adjuvant..


- "...is a non-antigenic substance that enhances T cell activation by promoting the accumulation of antigen presenting cells at the site of antigen exposure..."
 - increases expression of co-stimulatory molecules, cytokines, and HLA-peptide complexes on APCs
 - whole vaccines contain "natural" adjuvants

Goal of vaccination

- ... is to mimick infection and induce protective immunity by introducing pathogen components *without causing disease*
- induces memory, which leads to better and faster responses after exposure to pathogen
- Vaccine design can be either **empirical** or **rationale**
 - Rationale: based on an understanding of protective immunity
 - Empirical: trial and error

Current vaccines

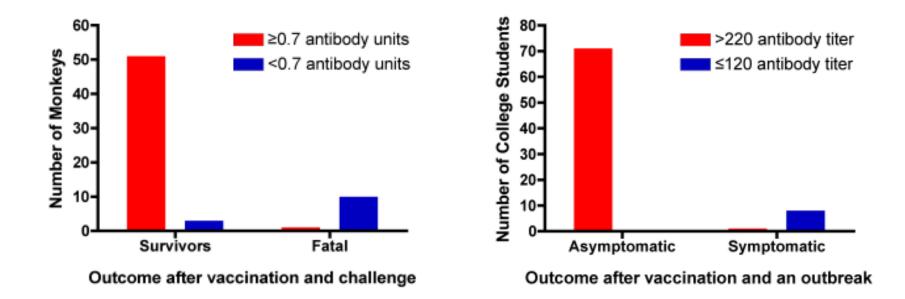
- most current vaccines:
 - have been designed empirically
 - are against extracellular pathogens and viruses that cause acute infection
 - lead to "sterlizing" immunity
- elicit neutralising antibody responses
 - BCG is the only exception => Th1 responses
- best correlate of protection in most -> certain attributes of the ab response
- less is known about the contribution of T cell responses

Important points

- antigen-presenting cells capture the vaccine antigen(s)
 - whole vaccines and/or adjuvants
 - analogous to natural infection
- induction of both T and B cell responses
- naïve B cells are optimally induced in germinal centers of lymph nodes by follicular dendritic and CD4+ helper T cells
 - undergo clonal expansion
 - differentiate into plasma cells and memory B cells
 - isotype switch -> IgG
 - produce higher affinity antibodies

Affinity maturation => boosting

- <u>affinity:</u> strength of antibody-antigen binding
- antibody genes can undergo random genetic rearrangements leading to selection of the antibodies that can bind with higher affinity to antigen and provide better immunity
- first vaccine dose tends to generate weaker antibodies, while boosting or antigen persistence increases the strength of antibody binding


Important points (2)

- memory B cells survive for many years through polyclonal activation
 - regenerate plasma cells
 - duration of protection is linked to B cell memory
- need an appropriate time between first dose and boost
 - allows affinity maturation
 - can potentially be sped up by adjuvants
- dose of antigen is critical
 - higher dose gives better short term responses,
 - lower dose better long term memory

Proof that antibodies protect

- difficult to prove what is protective
 - evidence from human and animal studies
- passive transfer of measles antibodies was found to be protective (1945)
 - similar findings for other pathogens
- often the titer and/or affinity of antibodies predicts protection
 - Titer: concentration of antibodies in serum
 - *H. influenza* $B \Rightarrow 0.15$ ug/ml of high affinity ab protects

Proof that antibodies protect (2)

Yellow Fever Vaccine

Amanna et al 2008

Measles Vaccine

Evidence for protective T cells

• BCG

- very little antibody response, mostly CD4+ T cell dependent

- Pertussis
 - vaccine can still protect after ab levels decline
- Measles
 - disease severity is reducted in absence of abs
- Influenza
 - T cells are important for cross-reactive protection
 - recognition of less variable viral regions

Herd immunity

• proportion of the population that needs to be immunized to break transmission chains and provide protection to unvaccinated individuals

Vaccine delivery

The Gene Gun

- most are injected intramuscularly
- can be mucosal (oral, nasal)
- some new ideas

OPV vaccine

Timing and location of protection

- responses need to be made rapidly and where the infection challenge occurs
 - mucosal pathogens ideally need mucosal responses
 - ie, influenza, respiratory pathogens
- tetanus
 - need pre-existing antibodies as toxins enter cells rapidly
- hepatitis B
 - antibody response needs to occur before virus becomes established in the liver -> goes intracellular

Babies

- most susceptible to many diseases, but have an immature immune system
 - especially in the first year of life
 - vaccine responses increase in a step-wise manner with age
 - make poor IgG responses, don't form germinal centers, etc.
- poor duration of immunity
 - but still enough so that boosting works
- maternal antibodies can inhibit or assist vaccine responses in babies
 - competition with baby's B cells, neutralize the vaccine
 - can still get T cell responses, sometimes better

The elderly

- ageing is associated with waning antibodies and a reduced T cell repetoire
- can affect vaccine responses for some vaccines
- may need to alter vaccine regimens for the elderly
 - more or higher doses

Types of vaccines

- attenuated/inactivated
 - BCG, cholera, polio, rabies
- purified antigen
 - tetanus, diptheria
- synthetic antigen
 - hepatitis B
- conjugate vaccines
 - H. influenza B, S. pneumo
- viral vector*
- DNA vaccine*

"subunit" vaccines

Attenuated vs Inactivated

- render the organism unable to cause disease while retaining immunogenecity
 - repeated passage in cell culture, deletion mutants, etc.
 - has all components of the original pathogen
 - can get both CMI and antibody reponses, plus innate
- Louis Pasteur => attenuation in bacteria
- attenuated viral vaccines most effective
 - often induce life-long immunity
 - can be associated with disease, esp. if host is immunocompromised

Attenuated vs Inactivated (2)

- polio
 - oral (live) vs injected (inactive) elicit similar ab responses
 - the oral vaccine is mucosal (same as route of infection), decreases intestinal secretion and therefore transmission
 - inactive vaccine is safer (oral can cause paralysis)
- measles
 - live is very effective but causes fever in 20-40%
 - inactive protection not as good, shorter, poorer T cell responses
- influenza
 - traditional vaccine is inactivated
 - new attenuated mucosal vaccine: single dose = protection, good T cell responses, broader recognition, IgA production

Safety vs Efficacy

"Very properly, the greatest emphasis is always placed on administering the vaccine in such a way that no unpleasant reaction ensues, but because vaccination must be safe for all, it is probably ineffective for many..."

- Rene Dubos, The White Plague: Tuberculosis, Man, and Society (1952)

Sub-unit vaccines

- use only a portion of the pathogen, usually the part that has been shown to elicit protective responses
- adjuvants are critical for these vaccines
- can be safer -> less of an inflammatory response
- successful examples include purified and synthetic proteins, virus-like particles (HPV)
- under development include viral vectors and DNA (next week)

Conjugate vaccines

- antibody responses to polysacchrides are T-independent
 - typically lower avidity/ shorter duration
 - poor memory
- can increase vaccine efficacy by linking polyS to protein carriers
 - this leads to T and B cell responses and better memory/affinity
- high affinity, complement binding abs are the key correlate of protection

Note that:

- most successful vaccines:
 - elicit neutralising antibody responses and B cell memory
 - antibody quality/quantity critical for protection
 - T cells often induced simultaneously, imp. for long term memory
 - are for acute, extracellular infections
 - have been made empirically
 - are for childhood infections
- For many pathogens => vaccines are under development