Ontogenesis of T lymphocytes

Dr. Anne Barasa MBChB, MMed (Path)

120118

Early Thymocyte Development

- Lymphoid precursors migrate into thymus from bone marrow
- Directed to thymus via chemokine receptors
- T-cell precursors first travel to outer cortex, proliferate, pass through thymic medulla, then exit at cortico-medullary junction
- In thymus, they proliferate, differentiate & undergo selection processes that result in development of mature T cells
- Thymic microenvironment provides membrane-bound & soluble signals that regulate T-cell maturation
- Stages of maturation defined by changes in their cell surface phenotype

- Double-negative (DN) cells lack detectable CD4 &CD8
- 4 subsets, based on presence or absence of other cell surface molecules

	Genotype	Location	Description
DN1	c-kit (CD117) ⁺⁺ , CD44 ⁺ , CD25 ⁻	BM to thymus	Migration to thymus
DN2	c-kit ⁺⁺ , CD44 ⁺ , CD25 ⁺	Subcapsular cortex	TCR γ , δ & β chain rearrangement T-cell lineage commitment
DN3	c-kit ⁺ , CD44 ⁻ , CD25 ⁻	Subscapular cortex	Expression of pre-TCR; β -selection
DN4	c-kit ^{low/-} , CD44 ⁺ , CD25 ⁻	Subcapsular cortex to cortex	Proliferation Allelic exclusion of β-chain locus α-chain locus rearrangement begins Becomes DP thymocyte

c-kit – receptor for stem cell growth factor CD44 – adhesion molecule CD25 – α -chain of IL-2 receptor

Early Thymocyte Development

- 2 broad categories of T-cells
 - Those that express TCR α & β receptor chains TCR $\alpha\beta$ cells
 - Dominant cells in adaptive immune response in secondary lymphoid organs
 - Those that express TCR γ & δ receptor chains TCR $\gamma\delta$ cells
 - Important role in protecting mucosal tissues from outside infection
- Choice to become a $\gamma\delta$ or $\alpha\beta$ cell is dictated by when and how fast the genes that code for each of the receptor chains successfully rearrange

Early Thymocyte Development – β-Selection

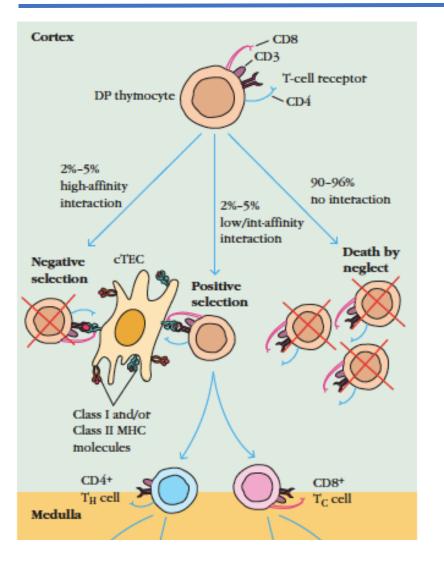
- Expression of pre-Tα chain surrogate for the real TCRα chain that has not yet rearranged
- Pre-Tα chain complexes with the rearranged & translated βchain & CD3 complex proteins to form the pre-TCR

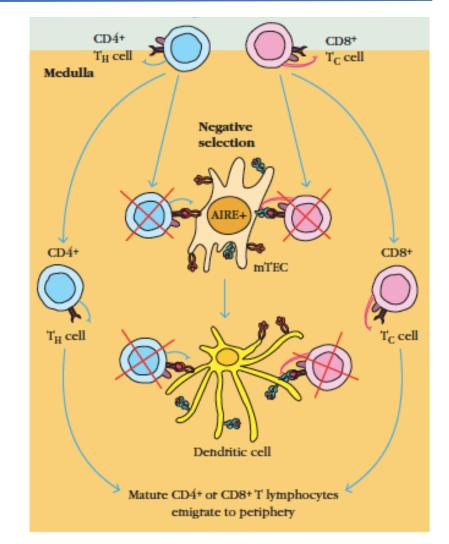
Early Thymocyte Development – β-Selection

- The pre-TCR initiates a signal transduction pathway that leads to:
 - Maturation to the DN4 stage
 - Rapid proliferation in subcapsular cortex
 - Suppression of further rearrangement of TCR β -chain genes, resulting in allelic exclusion of the β -chain locus
 - Development to the CD4+CD8+ **double-positive** (DP) stage
 - Cessation of proliferation
 - Initiation of TCR α -chain rearrangement

Early Thymocyte Development – β -Selection

- Clones of cells with the same TCR β -chain rearrangement can rearrange a different α -chain gene
- Resulting in a diverse population of cells (TCR diversity)
- Most T-cells fully rearrange & express a TCRβ-chain from only one of their two TCR alleles (allelic exclusion) – inhibition of further rearrangement of the other TCRβ allele
- Once a young DP thymocytes successfully rearranges & expresses a TCRα-chain, this will associate with the already produced TCRβ-chain, taking the place of the surrogate α-chain

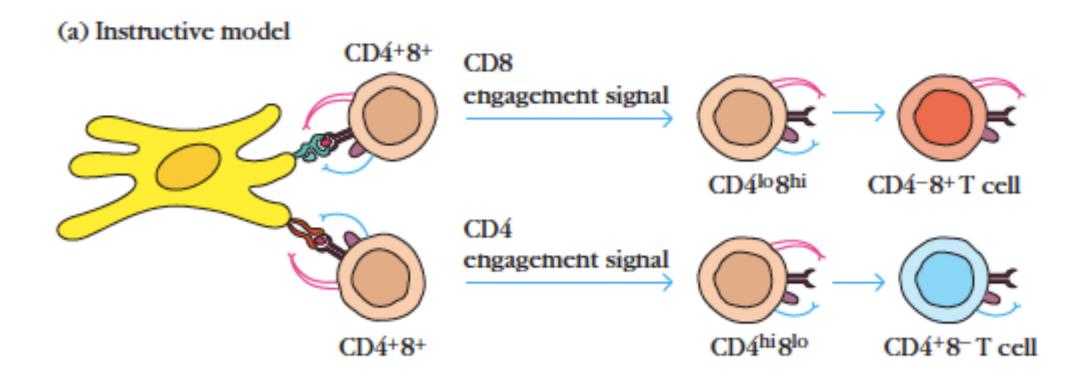

Positive and Negative Selection


- DP thymocytes expressing a fully mature surface TCRαβ/CD3 complex undergo thymic selection
- Based on affinity of TCR for the MHC/peptides they encounter in the thymic cortex
- <u>Positive selection</u> selects for thymocytes whose receptors can bind self-MHC from thymic epithelial cells, resulting in MHC restriction
- <u>Negative selection</u> selects against thymocytes bearing highaffinity receptors for self-MHC/peptide complexes; results in self-tolerance

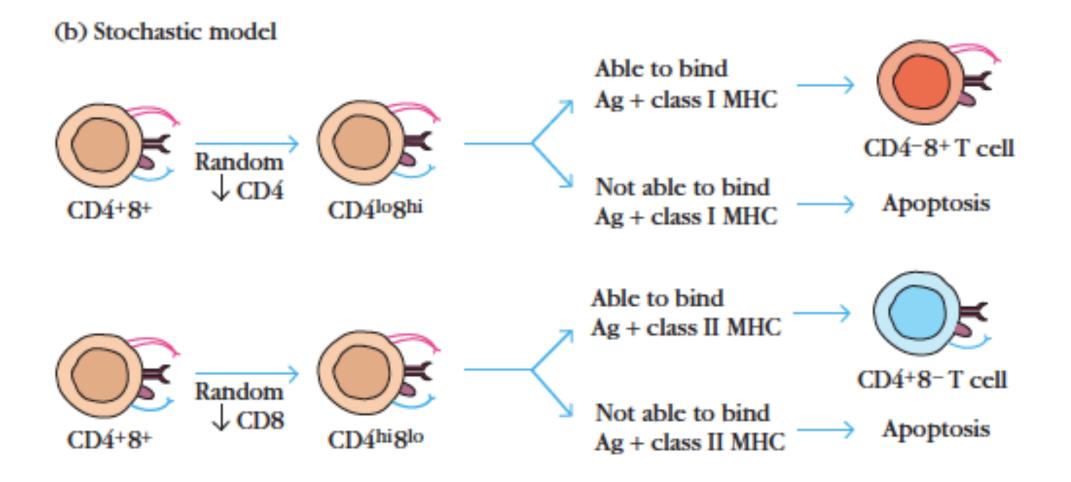
Positive and Negative Selection

- T-cells that do not meet the selection criteria (~98%) die by apoptosis
 - Thymocytes that do not bind MHC undergo death by neglect
 - Autoreactive thymocytes with high-affinity receptors for self-MHC/self-peptide complexes undergo **clonal deletion**
- Negative selection ensures self-tolerance

Positive and Negative Selection

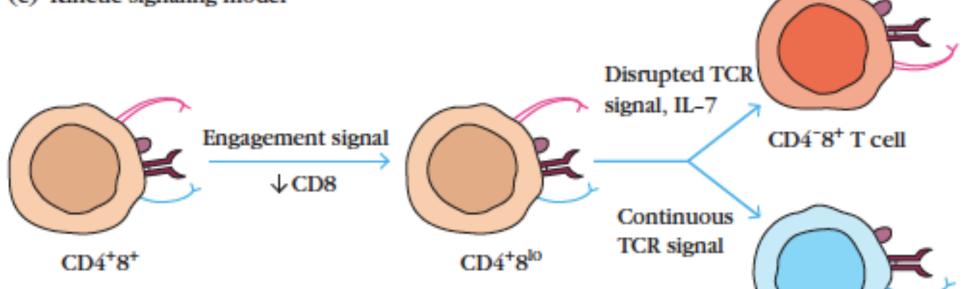


Kuby Immunology, 7th Edition


Lineage Commitment

- Changes in gene expression that result in
 - Silencing of one co-receptor gene (CD4 or CD8)
 - Expression of genes associated with a specific lineage function
- Affinity for MHC class I vs MHC II preference dictates the CD8⁺ vs CD4⁺ fate of developing thymocytes
- Several proposed models of lineage commitment

Interaction of a co-receptor with the MHC molecule for which it is specific results in down-regulation of the other co-receptor


Kuby Immunology, 7th Edition

Down-regulation of CD4 or CD8 is a random process

Kuby Immunology, 7th Edition

(c) Kinetic signaling model

- The decision to commit to the CD4 or CD8 lineage is based on the continuity of the TCR signal that a thymocyte receives.
- Positive selection results in down-regulation of CD8 on all thymocytes. This does not alter the intensity of a TCR/CD4/MHC II signal; cells receiving this signal continue to the CD4 SP lineage.
- However, the TCR/CD8/MHC I signal is interrupted, sending that cell towards CD8 lineage

CD4⁺8⁻ T cell

Lineage Commitment

- Small populations of DP thymocytes can also commit to other T-cell types
 - NK T-cells
 - Regulatory T-cells (T_{REG})
 - Intraepithelial lymphocyte lineages (IEL)

Exit from Thymus and Final Maturation

 After successful selection & lineage commitment, the thymocytes enter a quiescent stage & leave the thymus