Bacterial anatomy

Capsule/Glycocalyx/Slime layer

- Polysachamide Structures surrounding the outside of the cell envelope.
 - helps in the formation of biofilms on inert surfaces such as catheters, teeth and heart valves.

Significance of capsules

- Antiphagocytic
- Growth in a biofilm prevents access of host cells or antibiotics
- Prevent cell from drying out
- used as antigens in certain vaccines e.g
 pneumococcal vaccine

Cell wall

Cell wall

- Main component is peptidoglycan (murein)
- The thickness of peptidoglycan distinguishes gram positive from gram negative bacteria
- Overlapping N-acetyl glucosamine
 (NAG) & N-acetyl muramic acid (NAM)
- Present in almost all bacteria, except
 Mycoplasma and ureaplasma

Gram positive cell wall

.

Cell wall of gram positive bacteria

- Thick peptidoglycan layer (50-90% of cell wall material)
- Composed of;
- a) Teichoic acids
 - mediate attachment to mucosal membranes
 - Induce septic shock in certain G+ve bacteria

Cont.

- b) Lipoteichoic acid
 - Anchor cell wall to cell membrane
 - For epithelial cell adhesion
- c) Polysaccharides and proteins
 - protect peptidoglycan layer from action of agents such enzymes
 - promote colonization by sticking the bacteria to the surface of host cells

Gram negative

Cell wall of Gram Negative bacteria

- Thin peptidoglycan layer comprising 5-10% of cell wall material.
- have an additional outer membrane.
- Have a periplasmic space- contains digestive enzymes and other transport proteins.
- contains porin protein specifically allow transport of solutes in and out of the cell

Cont.

- G-ve cell wall contain three components
- a) Lipoprotein anchors the outer membrane to peptidoglycan.
- b) Outer membrane protects the cell from proteolytic enzymes.
 - c) Lipopolysaccharide (LPS)
 - Present in almost all gram –ve bacilli
 - Major component is Lipid A- endotoxin (responsible for endotoxic activities – fever, hypotension, septicemia)

Acid-fast bacteria

- The cell envelopes of Mycobacteria are more complex than other bacteria.
- Composed of Mycolic acid (thick waxy membranous layer outside the peptidoglycan layer)

Significance of cell wall

- Maintains cell shape
- Protects bacteria from osmotic lysis
- Determines reactivity to Gram stain
- Site of action of certain antimicrobial agents (E.g. Penicillins, Cephalosporins)
- Enhances pathogenicity

Plasma/Cytoplasmic/Cell membrane

- separates cell wall from cytoplasm
- Acts as a semipermeable membrane
- Composed of lipoproteins with small amounts of carbohydrates
- Generally do not contain sterols (except for Mycoplasma)

Plasma/Cytoplasmic/Cell membrane

Function

- active transport of molecules into the cell
- Synthesis of precursors of the cell wall
- secretes enzymes and toxins

Pili

- Hair-like projections on the surface of the cell
- Shorter and straighter than flagella
- Composed of protein pilin
- Mostly on gram negative bacteria

Pili..2

- Fimbriae/ Common pili cover the cell surface
 - For attachment
- -Sex pili longer than common pili
 - Involved in conjugation
 - Longer than fimbriae

Flagella

- Long , filamentous surface appendages
- For bacterial motility
- Composed of the protein 'flagellin'
- May serve as antigenic determinants (e.g. the H antigens of Gram-negative enteric bacteria)

Ribosomes

- They are composed of RNA and proteins.
- Site of protein synthesis
- Site of activity of antimicrobials that disrupt protein synthesis
- 70S in size with 50S and 30S subunits

Nucleoid

- Area of cytoplasm in which DNA is located
- Bacterial DNA consists of a single, circular double-stranded DNA
- lacks nuclear membrane (called nucleoid)
- Contains genetic material that codes for all genetic information expressed by the cell

Plasmids

- Extrachromosomal DNA molecules
- Easily passed from bacterium to bacterium through sex pili
- Free or integrated into the chromosome
- May encode genes of antibiotic resistance and pathogenesis factors (e.g. enzymes and toxins)

Inclusion/nutrient granules

- Composed of volutin, lipid and polysaccharide.
- Stain characteristically with certain dyes
- Example; Volutin granules are seen in Corynebacterium spp
- Function; Serve as storage area for nutrients and energy for cell metabolism

Mesosomes

 appear as convoluted indentations (invaginations) in the cytoplasmic membrane

Functions

- Are sites of respiratory enzyme activity
- Coordinate nuclear & cytoplasmic division during binary fission

Spores

- round, oval, or elongated
- Formed inside the parent cell (Endospores)
- Formed when conditions for vegetative growth are not favourable
- They exhibit no metabolic activity
- Resistant to heat, radiation and drying and can remain dormant for hundreds of years
- Formed by bacteria like Clostridia,

Bacillus

Bacterial physiology

Definition

 Study of how bacteria function including such processes as nutrition, growth, reproduction and locomotion

Growth and Proliferation of bacteria Bacterial requirements for growth

- Temperature
- Oxygen
- Nutrients
- pH
- moisture

Temperature

- Temperature Classification
 - -Psychrophiles low temp10-20 °C
 - -Mesophiles 20- 40°C
 - -Thermophiles temp. > 40°C

O₂ utilization

- -Strict (obligate) aerobes require O₂ for growth e.g. Pseudomonas aeruginosa
- —Strict (obligate) anaerobes grow in the absence of O₂ e.g. Bacteroides fragilis
- -Facultative anaerobes do not require O₂ for growth but grow better in its presence e.g. Staphylococcus species

O2 utilization . . 2

- Microaerophilic Grow well in low concentrations of oxygen and higher carbon dioxide concentrations;
 - -E.g. Neissena meningitidis

pH

Neutrophiles (5 to 8)

Acidophiles (below 5.5)

Alkaliphiles (above 8.5)

Generation time

- The time required for a bactenum to give rise to 2 daughter cells under optimum conditions. Examples
 - Escherichia coli & other medically important bacteria – 20 mins
 - -Tubercle bacilli 20 hrs
 - Leprae bacilli 20 days

Bacterial growth curve

Lag phase

- The bacteria are adapting to the new environment
- No cell division
- Vigorous metabolic activity
- cells may increase in size during this time, but simply do not undergo binary fission

Exponential/Logarithmic phase

- Cells start dividing and their number increases exponentially
- Constant, maximal growth rate
- Increased rate of metabolism

Stationary phase

- the death rate equals the growth rate.
- cell division stops due to depletion of nutrients & accumulation of toxic products
- Spore formation

Decline/ Death phase

- Loss of viability—cells die due to
 - -toxic products
 - loss of selective permeability.
 Fluid gets into the cells causing cell lysis

Charles of the late of