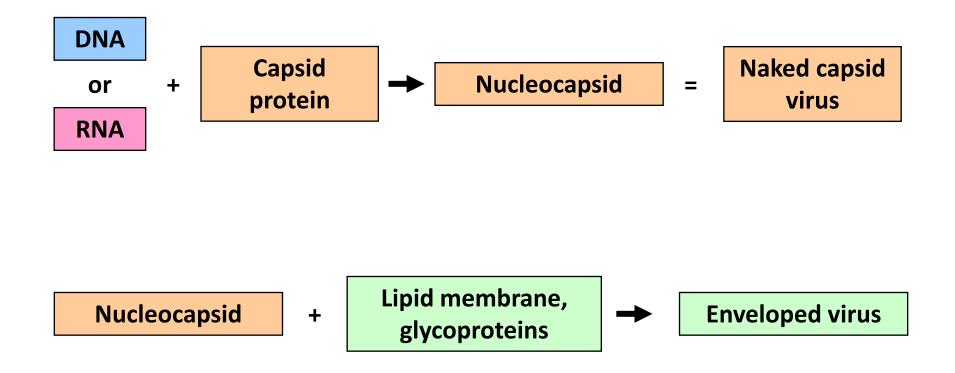
Virus Classification, Replication, Transmission, & Pathogenesis (MBChB II – 03rd Nov 2016)

Dufton Mwaengo, PhD Senior Lecturer Dept Medical Microbiology CHS - UoN

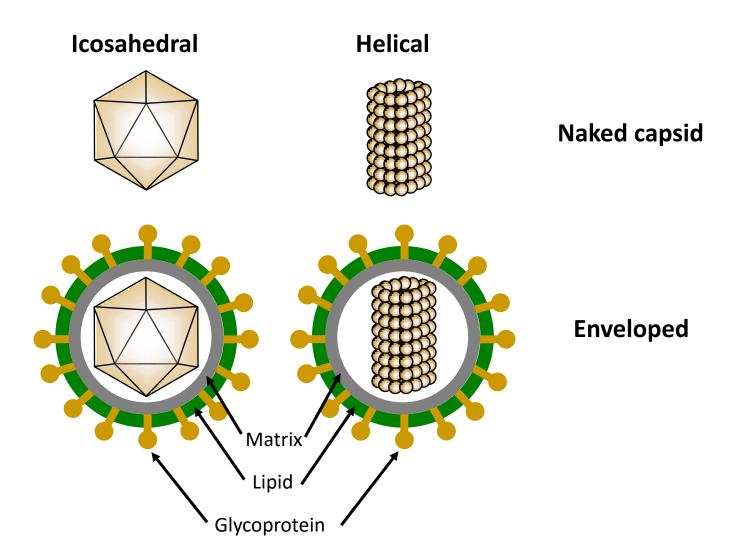
Characteristics of Viruses

1. Tiny infectious particle

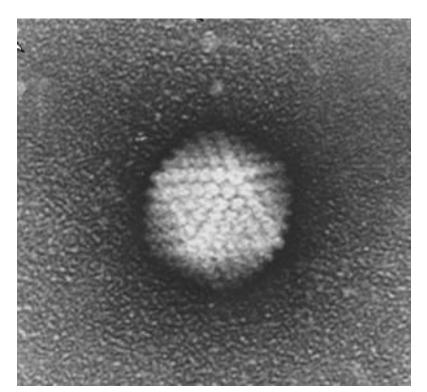
- Nucleic acid (RNA/DNA) + protective protein coat (capsid)

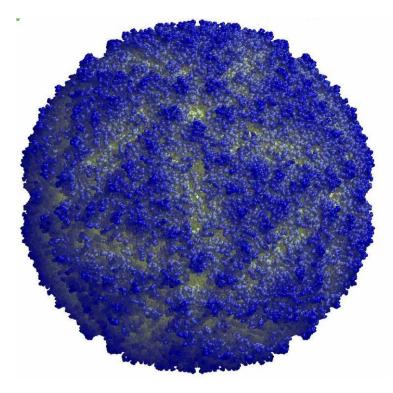

- 1. Viruses not cells smaller than cells.
- 2. Structurally simple
- 3. Intracellular parasites (only replicate inside a living cell)
- 4. Viruses found in bacteria, plants, insects, fish etc.
- 6. Virions non-living particles
 - Infect an appropriate host cell in order to replicate.

Structure of Viruses


- 1. Core genetic material
 - RNA or DNA, Not both
- 2. Protein coat or capsid
 - Protects viral genome
 - Core + capsid = nucleocapsid
- 3. Nucleocapsid

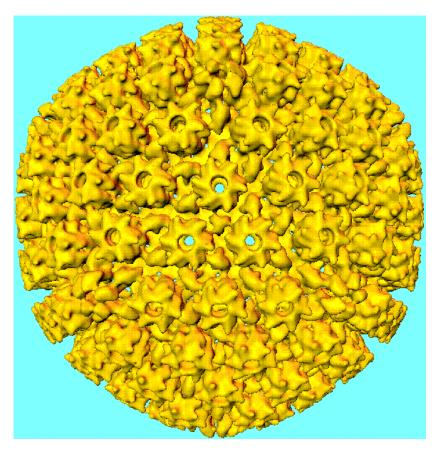
- Capsomer Nucleic acid core Nucleocapsid Envelope
- either icosahedral or helical symmetry
- 4. Many animal virus particles are surrounded by a lipoprotein **envelope**


Basic virus structure



Capsid symmetry

Icosahedral naked capsid viruses



Adenovirus Electron micrograph

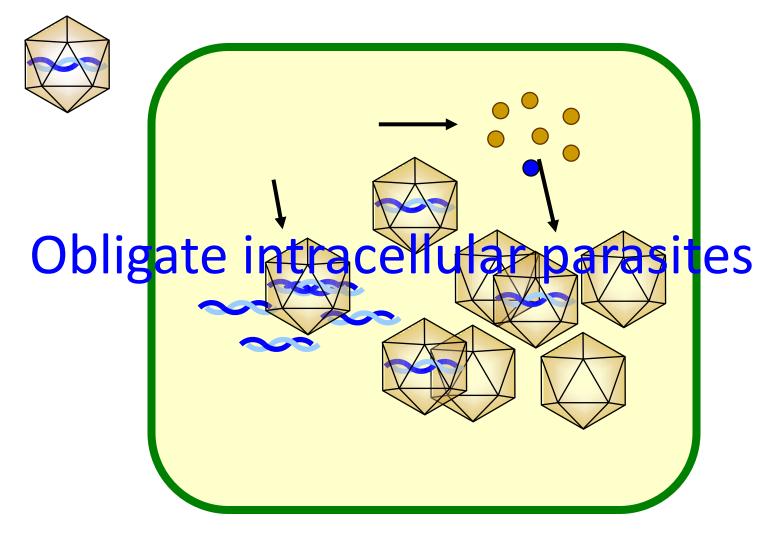
Foot and mouth disease virus Crystallographic model

Icosahedral enveloped viruses

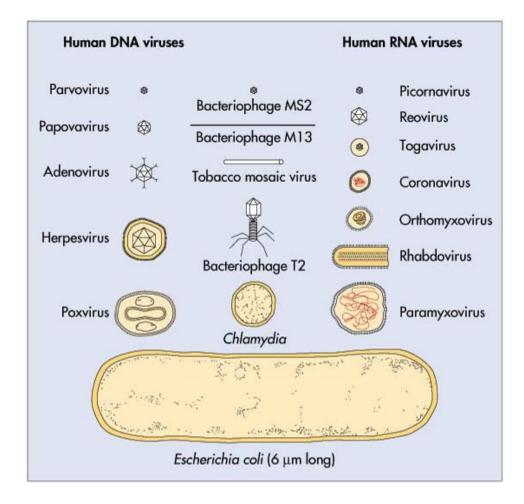
http://web.uct.ac.za/depts/mmi/stannard/emimages.html

Herpes simplex virus Electron micrograph

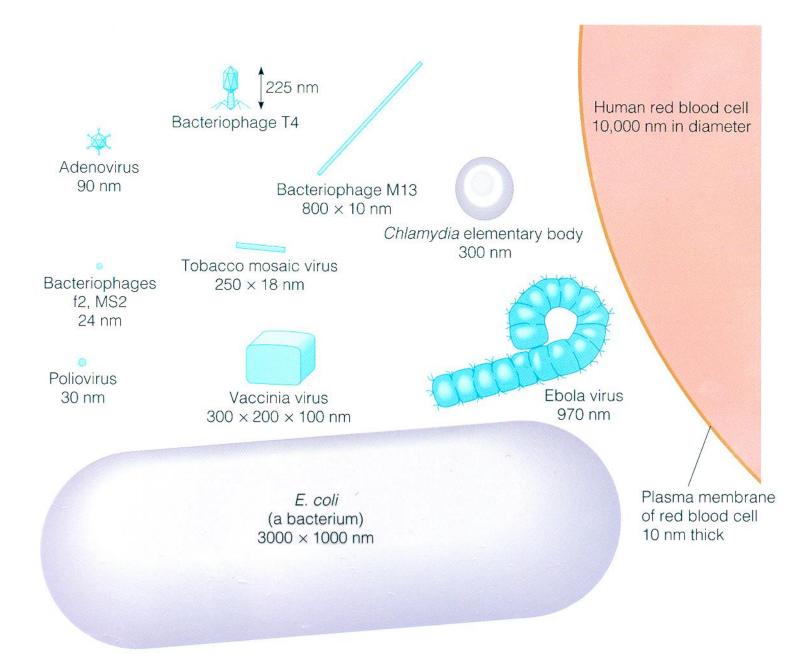
Herpes simplex virus Nucleocapsid cryoEM model


Properties of naked capsid viruses

- Capsid is resistant to
 - Drying
 - Heat
 - Detergents
 - Acids
 - Proteases
- Consequences
 - Can survive in the gastrointestinal tract
 - Retain infectivity on drying
 - Survive well on environmental surfaces
 - Spread easily via fomites
 - Must kill host cells for release of mature virus particles


Properties of enveloped viruses

- Envelope is sensitive to
 - Drying
 - Heat
 - Detergents
 - Acid
- Consequences
 - Must stay wet during transmission
 - Transmission in large droplets and secretions
 - Cannot survive in the gastrointestinal tract
 - Do not need to kill cells in order to spread


Viruses defined

Structures compared

From Medical Microbiology, 5th ed., Murray, Rosenthal & Pfaller, Mosby Inc., 2005, Fig. 6-4.

Classification of viruses that cause human diseases

Two types:

- 1. Traditional
- 2. Baltimore (new)

Classification of Human Viruses

<u>1. Traditional</u> – based on:

- Disease produced (e.g. herpes, yellow fever, etc)
- Part of the body affected (e.g. hepatitis virus; viral enteritis)
- Location where disease first seen (e.g. Ross River virus, Ebola virus)
- Type of nucleic acid (e.g. DNA viruses, RNA viruses)
- not very useful.

Traditional Classification of Viruses

• Family – "viridae"

e.g. Herpesviridae

Subfamily/Genus – "virinae"

e.g. Alpha Herpesvirinae

• Species – "virus"

e.g. Herpes Simplex Virus (HSV)

DNA virus family – Virion Properties

<u>Family</u>	<u>Diameter</u>	<u>Symmetry</u>	<u>Nature</u>
Parvoviridae	20 nm	Icosahedral	ss DNA, linear
Papovaviridae	45-55 nm	Icosahedral	dsDNA, circular
Adenoviridae	70 nm	Icosahedral	dsDNA, linear
Herpesviridae	150 nm	Icosahedral	dsDNA, linear
Poxviridae	250 nm	Complex	dsDNA, linear
Hepadnaviridae	42 nm	Icosahedral	dsDNA, circular

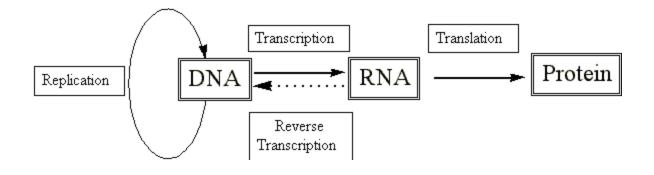
RNA virus family – Virion Properties

Family Picornaviridae Caliciviridae Astroviridae Togaviridae Flaviviridae Coronaviridae Paramyxoviridae Rhabdoviridae Filoviridae Orthomyxoviridae Arenaviridae Bunyaviridae Reoviridae Retroviridae

Diameter 25-30 nm 35-40 nm 28-30 nm 60-70 nm 40-50 nm 75-160 nm 150-300 nm 180x75 nm 850x80 nm 80-120 nm 110-130 nm 90-120 nm 60-80 nm 80-100 nm

Symmetry Icosahedral Icosahedral Icosahedral Icosahedral Icosahedral Helical Helical Helical Helical Helical Helical Helical Icosahedral Icosahedral

Nature ssRNA (+) ssRNA (+) ssRNA (+) ssRNA (+) ssRNA (+) ssRNA (-) ssRNA (-) ssRNA (-) ssRNA (-) ssRNA (-), 7-8 seg ssRNA (-), 2 seg ssRNA (-), 3 seg dsRNA 10-12 seg ssRNA (+)


Human Herpesviruses

Virus	Subfamily	Disease	Site of Latency
Herpes Simplex Virus I	α	Orofacial lesions	Sensory Nerve Ganglia
Herpes Simplex Virus II	α	Genital lesions	Sensory Nerve Ganglia
Varicella Zoster Virus	α	Chicken Pox Recurs as Shingles	Sensory Nerve Ganglia
Cytomegalovirus	β	Microcephaly/Mono	Lymphocytes
Human Herpesvirus 6	β	Roseola Infantum	CD4 T cells
Human Herpesvirus 7	β	Roseola Infantum	CD4T cells
Epstein-Barr Virus	γ	Infectious Mono	B lymphocytes, salivary
Human Herpesvirus 8	γ	Kaposi's Sarcoma	Kaposi's Sarcoma Tissue

Classification of viruses that cause human diseases

- **2. Baltimore Classification** based on:
- Type of nucleic acid
- Method of replication

Central Dogma (Information flow)

Host cell can:

- 1. Copy RNA from DNA (transcription) RNA polymerase II
- 2. Copy DNA from DNA (replication) DNA polymerase
- 3. <u>Cannot</u> copy DNA from RNA

Baltimore classification

• Central theme

all viruses must generate (+) sense mRNA
 mRNA -> proteins -> replication

• Precise mechanism of replication may differ

• 7 groups of virus genomes

- Replication strategy dependent on genome type

• By convention:

- Top strand of coding DNA written in 5'-3' direction (+ve sense)
- mRNA is also +ve sense

Baltimore classification of viruses

Seven classes:

- 1. dsDNA viruses
- 2. ssDNA viruses
- 3. dsRNA viruses
- 4. (+) sense ssRNA viruses
- 5. (-) sense ssRNA viruses
- 6. (+) sense ssRNA with DNA intermediate
- 7. dsDNA with RNA intermediate

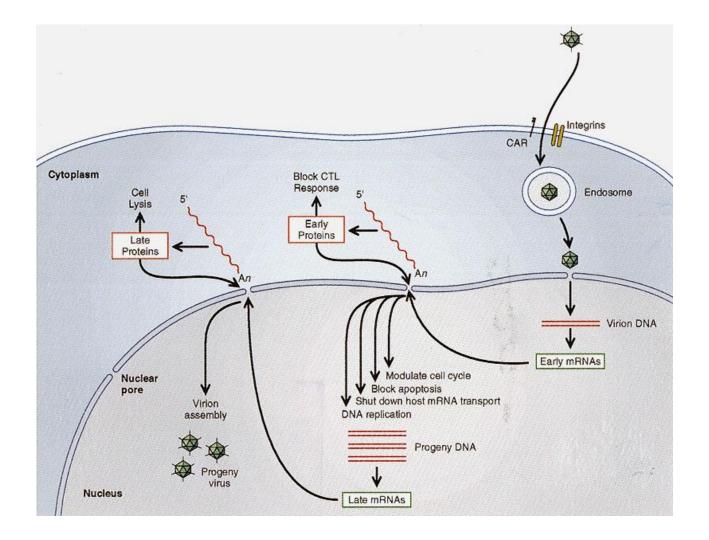
Formation of mRNA by DNA viruses

ds DNA (±) virus Class I Class VII

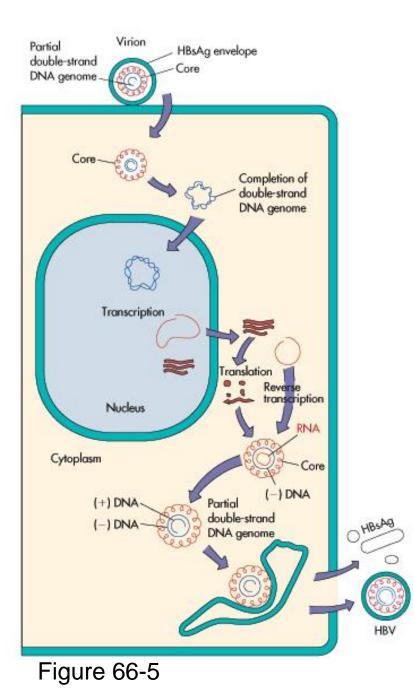
CIU33 111

 \sim

ss DNA (+) virus Class II

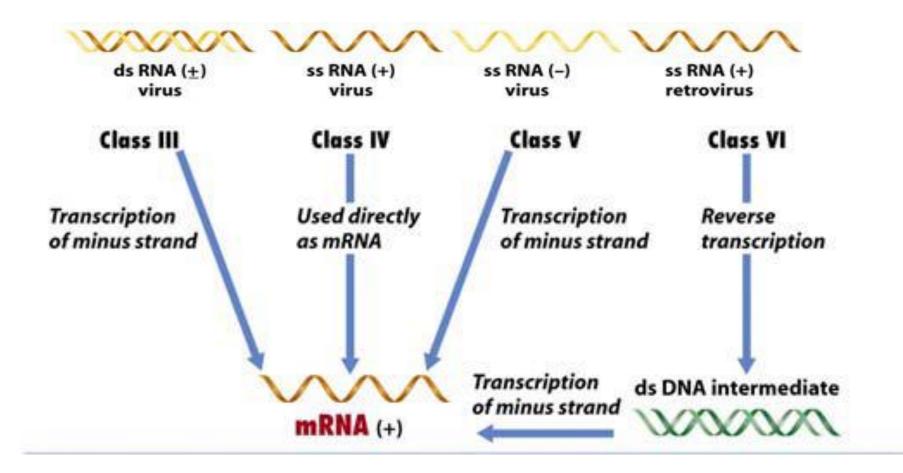

Synthesis of other strand

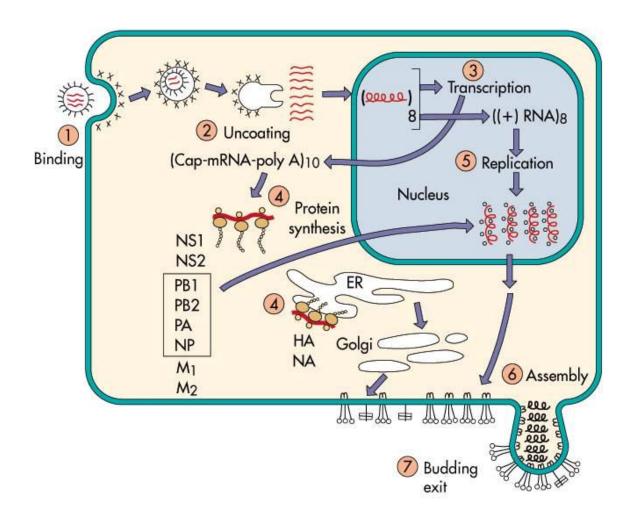
ds DNA intermediate


-Transcription of minus strand

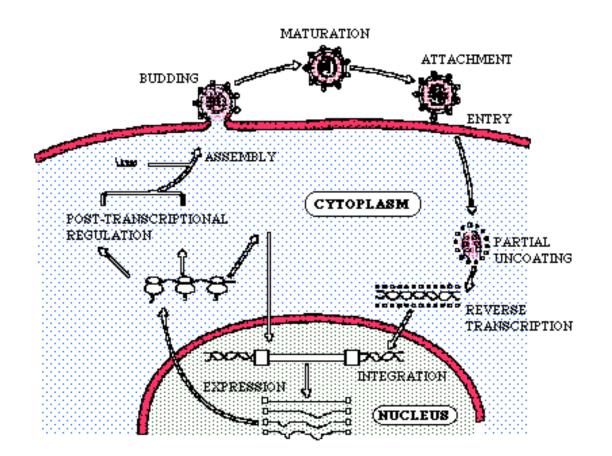
mRNA (+)

Adenovirus replication cycle


(From Fields Virology, 4th ed, Knipe & Howley, eds, Lippincott Williams & Wilkins, 2001, Fig. 67-5.)


The growth cycle of Hepatitis B virus

From Murray et. al., Medical Microbiology 5th edition, 2005, Chapter 66, published by Mosby Philadelphia,,


Formation of mRNA by RNA viruses

Influenza replication

Retroviruses - Replication

Host range and tissue specificity (tropism)

- 1. A particular virus can usually only infect a particular species or host (host range) or even only a particular cell or tissue in that host (tissue tropism or specificity).
- 2. Specificity is controlled by the correspondence between viral attachment molecules (ligands) and host cell receptors

Examples of host and tissue specificity - Viruses that infect:

- (a) Only humans measles, mumps, chickenpox
- (b) More than one species polio (humans & non-human primates);
- (c) Cross species barriers zoonotic viruses e.g. rabies wild animals & humans)
- (d) Demonstrate strong tissue tropism e.g. polio virus muscle cells and neuronal cells;

Replication of animal viruses

1. Penetration

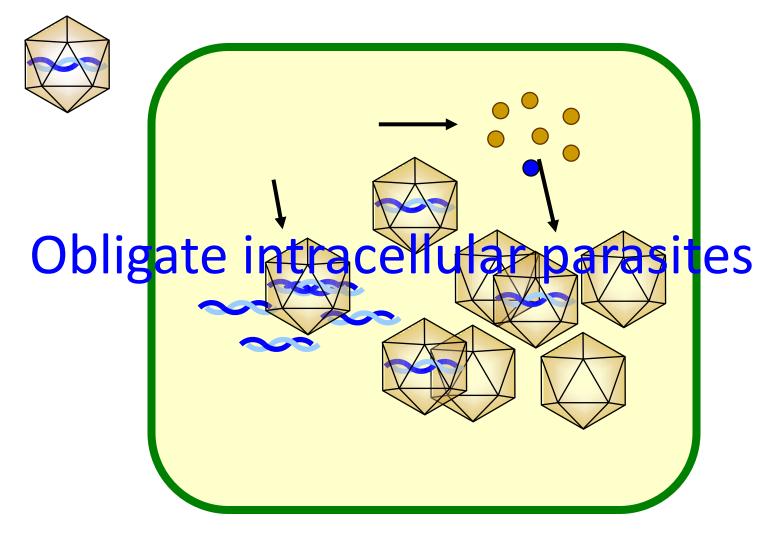
- endocytosis or
- fusion

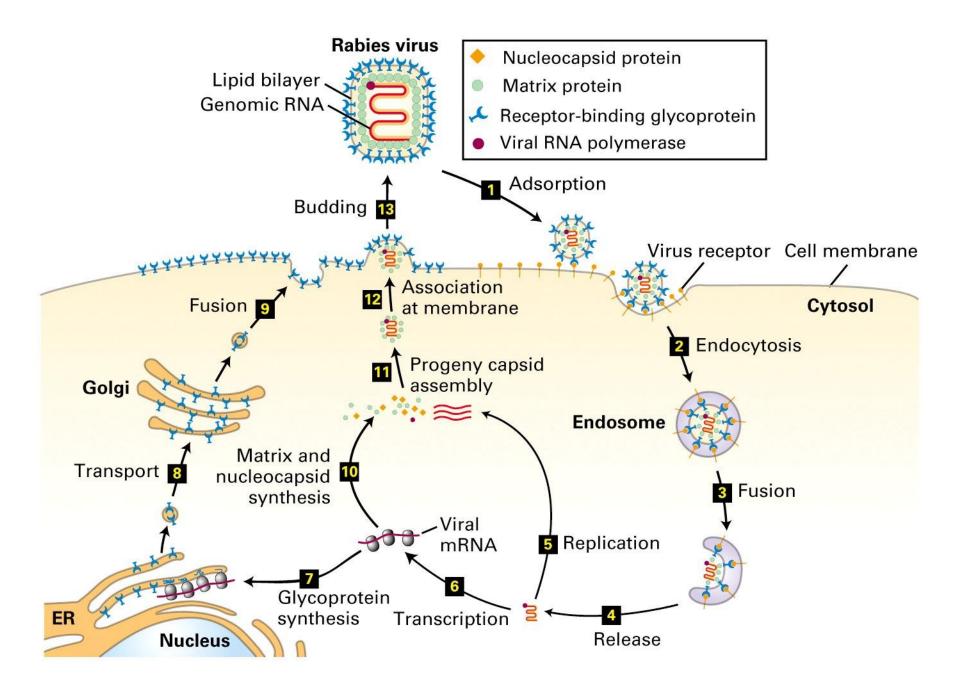
2. Uncoating

- viral or host enzymes

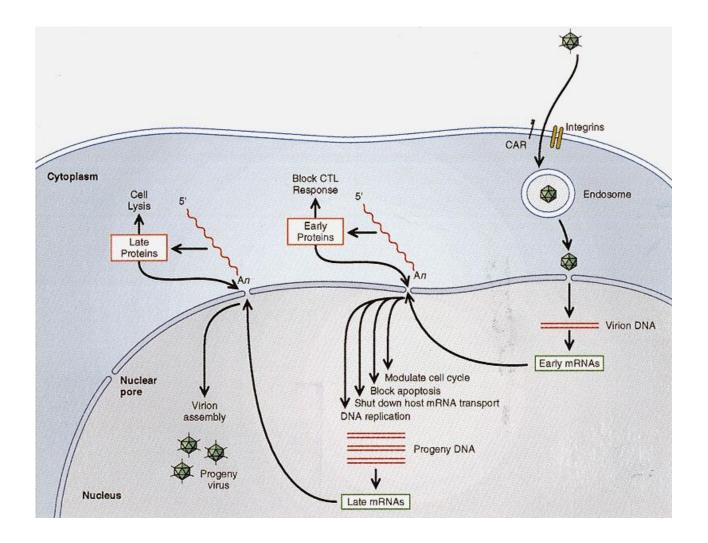
3. Replication/Biosynthesis

- Production of nucleic acid and proteins

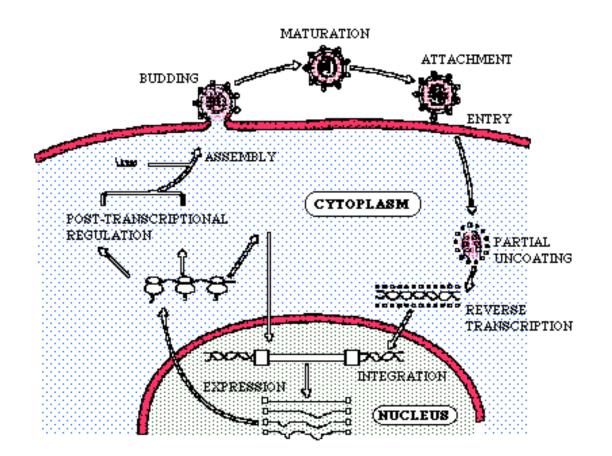

4. Maturation


- Nucleic acid and capsid proteins assembly

5. Release

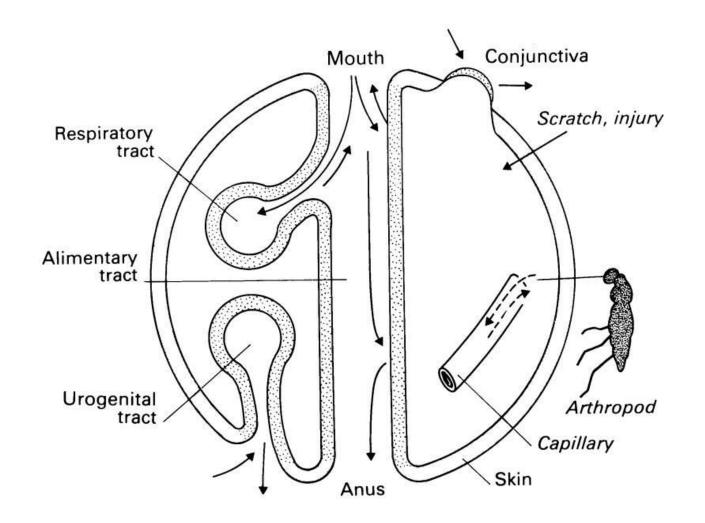

- By budding (enveloped viruses)
- Rupture/lysis (naked viruses)

Viruses defined



Adenovirus replication cycle

(From Fields Virology, 4th ed, Knipe & Howley, eds, Lippincott Williams & Wilkins, 2001, Fig. 67-5.)


Retroviruses - Replication

Transmission of viral diseases

- 1. Airborne transmission viruses shed from:
 - Upper respiratory tract (common cold, influenza);
 - Skin lesions (e.g. chicken pox, herpes viruses).
- Fecal-oral transmission viruses shed in the feces
 –contaminated water/food e.g. Hepatitis A virus
- 3. Body fluids transmission e.g. blood (HIV-1)
- 4. Vector transmission viruses carried by insects and arthropods arboviruses (*arthropod borne viruses*).
- 5. Foetal and neonatal transmission
 - MTCT e.g. HIV

Routes of entry and shedding

Portals of entry of viruses into the host, and sites of shedding from the host. (From Fields Virology, 4th ed, Knipe & Howley, eds, Lippincott Williams & Wilkins, 2001, Figure 9-2)

Respiratory tract

- Most important entry site
- Specific cell receptors (epithelial cells)
- Replication at reduced temp 33-deg C
 - Localized infections (most)
 - Systemic infections (some)

Alimentary tract

- Most acquired by ingestion
- Stability at low pH (entero-, rota-, caliciviruses)
- Naked viruses (mostly)
- Major courses of viral diarrhea (rota, calici viruses)
 - Localized infections (rota, calici)
 - Systemic/generalized infections (polio, HAV, HEV)
- Rectum
 - HIV and other STIs

Skin

- Largest organ in body
 - Keratinized cells/dead cells (outer layer)
 - -> tough & impermeable barrier
 - Abrasions/artificial puncture
 - -> some viruses replicate (local lesions e.g. papilloma, pox)
 - Via bite of arthropod vectors (mosquito, tick, sandfly) (Arboviruses)
 - Via iatrogenic (i.e. human intervention)
 - -> HBV, HCV, HIV via contaminated needles/blood transfusion

Other routes

1. Genital tract

- -> HHV-2 (= HSV2), Papillomaviruses produce
 - localized lesions
- -> HIV, HTLV, HBV, HCV (no local lesions, but sexually transmitted)

2. Conjuctiva/Eye

- -> Rare route
- -> Some adenoviruses, few enteroviruses

Types of viral infections

- 1. Acute lytic infections virus causes disease with well-defined symptoms (e.g. measles, mumps, common cold).
 - Release of new virus particles -> cell lysis and death.
 - Result: long-lasting immunity (most)
 - Recovery and protected for life
 - If mutation occurs: immunity not protective
- 2. Subclinical infections person infected , no specific signs or symptoms
 - Just general malaise, slight fever, lymphadenopathy etc
 - Recovery: often unaware of having had a disease
 - Serologic tests: detection of antibodies to virus

Examples:

- Rubella (German measles)
- Polio, hepatitis B and C are other examples of diseases

Types of viral infections

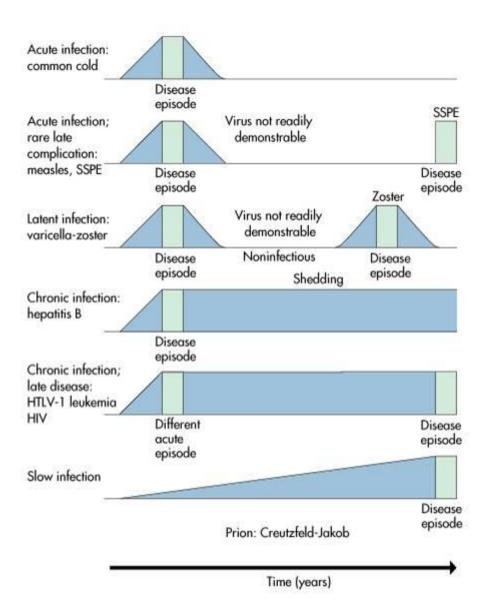
3. Persistent viral infections – virus is not eliminated by the immune system.

a. Latent infections – after a primary infection, virus remains dormant in some host cells and can be reactivated some time later because of stress or immunosuppression.

<u>Examples</u> – cold sores; varicella (chicken pox)-> zoster (shingles)

b. Slow infections – many years after the initial disease a new form of the disease slowly emerge – different symptoms.

Example – measles in childhood can be followed by subacute sclerosing panencephalitis (SSPE) in adolescence or young adulthood.


4 Chronic viral infections - person persistently infected with the virus – continues to shed the virus.

Examples include Hepatitis B and HIV.

5. Oncogenic viruses – viruses that can cause tumours.

Examples: Human papillomavirus (cervical cancer), EBV – Burkitts Lymphoma)

Modes of infection

From Medical Microbiology, 5th ed., Murray, Rosenthal & Pfaller, Mosby Inc., 2005, Fig. 49-3

Viral Pathogenesis

- Process by which viral infection leads to disease
- Disease patterns
 - Localized
 - Systemic

Virus spread in the body

1. Localized infection

- Infection & initial replication in epithelial cells (site of entry)
- Spread of infection via sequential infection of neighbouring cells
- Little or no invasion beyond epithelium (Papilloma, Paramyxo, Influenza)

2. Systemic/Generalized infections

- Infection & <u>replication at site of infection</u> (epithelial cell)
- Spread via lymphatics -> regional lymph nodes
- Primary viremia -> target organ
- Secondary viremia
- 2ndary viremia could result in virus spread to other parts of the body

ACUTE INFECTIONS

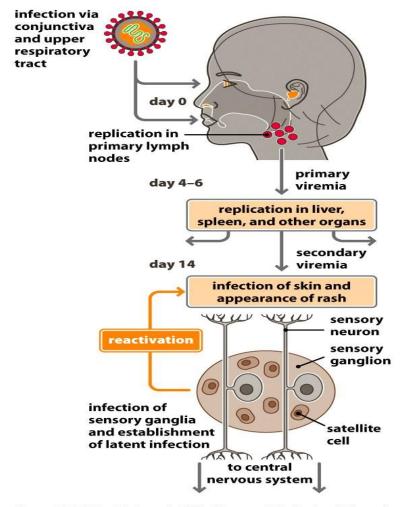
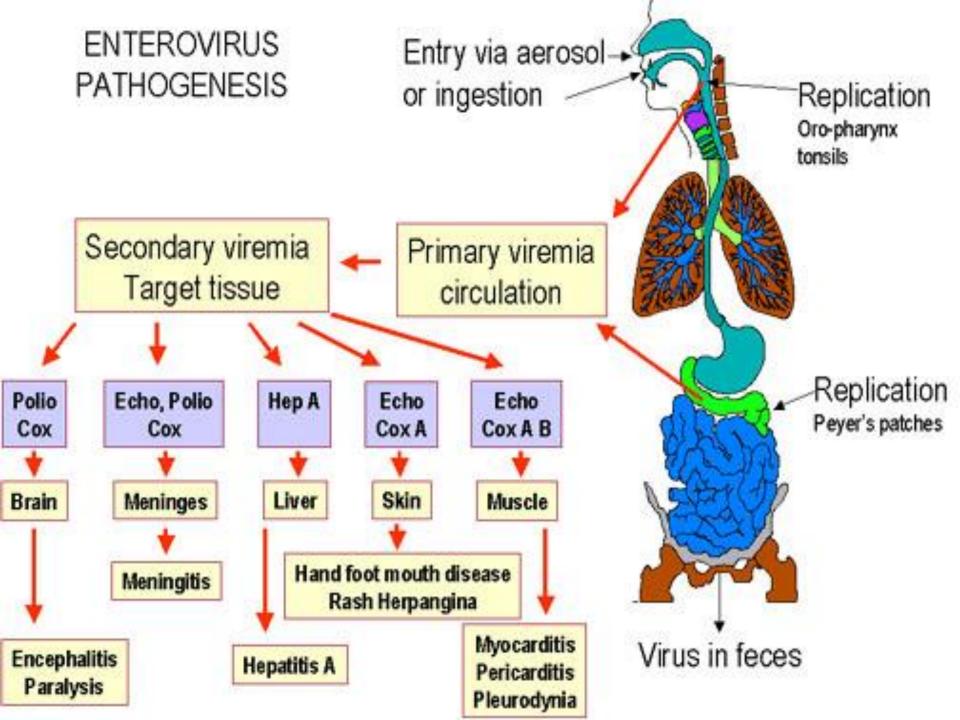



Figure 13.2 Microbiology: A Clinical Approach (© Garland Science)

Microbiology: A Clinical Approach © Garland Science

Pathogenesis: cycle of infection

- Infection
- Primary site replication
- Spread (not all viruses)
- Secondary site replication (not all viruses)
- Shedding, transmission

Mechanisms of cell death

1. Shutdown of cellular protein synthesis

- Viral proteins can interfere with cellular proteins
- Competition for ribosomes
- selective degradation of cellular mRNAs
- 2. Shutdown of cellular nucleic acid synthesis
 - Reduced mRNA transcription/cellular DNA synthesis
 - Cellular DNA degradation (e.g. Poxviruses)

3. CPE of viral proteins

- Accumulation of viral components
- Toxic viral proteins

- Insertion of envelope proteins into cell membranes (integrity of cell membrane affected)

Mechanisms of Disease Production - 1

Viral damage to tissues & organs

- Lytic viruses
 - -> Virus repli in liver (e.g. RVFV) -> liver damage
 - -> Poliovirus replication in neurons -> paralysis
- Damage of epithelium
 - (a) Respiratory tract
 - -> 2ndary bacterial infections
 - (b) Intestinal tract
 - -> defective villus cells
 - -> accumulation of fluid in lumen of gut (impaired absorption)
 - -> diarrhea
 - -> 2ndary bacterial infections (e.g. E.Coli) leading to further diarrhea

Mechanisms of Disease Production - 2

Immunopathology

- 1. <u>Type I hypersensitivity</u> (anaphylactic)
 - -> Antigen-IgE (mast cells & basophils) interactions
 - -> release of histamines etc
- 2. <u>Type II hypersensitivity</u> (ADCC)
 - -> Antibody-Antigen (surface of infected cell) interaction
 - -> Activation of complement cascade -> cell lysis
- 3. <u>Type III hypersensitivity</u> (immune complex mediated)
 - -> Antigen-antibody reactions

-> Cause inflammation and cell damage (infiltration of polymorphonuclear leukocytes – inflammatory rxns)

- 4. <u>Type IV Cell mediated hypersensitivity</u>
 - -> delayed hypersensitivity

-> Mediated by T cells (not antibody) – involve inflammation, lymphocytic infiltration –> cytokines

Determinants of Viral Pathogenesis

Cellular & viral factors

- 1. Viral virulence
 - -> Ability to promote replication & cell change
 - -> Measure of pathogenicity
- 2. Host genetic factors
 - -> Presence/absence of receptors (e.g CCR5 delta32 in HIV)

Age (young vs. old)

Immunological status

- 1. Normal vs. Immunocompromised
- 2. Primary vs. secondary infection
- 3. Pre-existing immunity (due to vaccination/prior infection)

Dual infections

For each virus, know:

- Classification
 - 1. Family
 - 2. Genus/subfamily
 - 3. Nucleic acid type (RNA/DNA?), types/species (if any)
- Pathogenesis
 - transmission/entry/shedding
 - Replication (cytoplasmic vs nucleic?)
 - Spread (local vs systemic?)
 - immune response/counter response
 - damage/disease mechanism
- Diagnosis
- Treatment/prevention
 - Drugs (if available e.g. HIV, HHVs, Influenza etc)
 - Vaccines (if available measles, rubella, YF, etc)