Introduction to Clinical Biochemical Endocrinology (LAB)

PROF CHRISTINE KIGONDU
THEMATIC UNIT OF CLINICAL CHEMISTRY
LEVEL 3

OBJECTIVES:

- 1) Review endocrinology (Level II)
- Definitions
- Names of endocrine glands and the hormones they produce
- Endocrine control---AXIS
- Biochemical alterations related to Endocinopathies
- Aetiological factors

OBJECTIVES CONTINUED

- 2) Review of:
- Hypothalamus
- Anterior pituitary
- Thyroid gland
- Adrenal cortex

OBJECTIVES CONT.

- Ovary/Testis
- Pancreas/adrenal medullar (CHO metabolism)-

OBJECTIVES CONT.

- 3) Symptoms and signs of common endocrinopathies
- 4. Describe the biochemical investigations of the endocrinopathies
- 5. Use of endocrine lab
- 6. Interpretation of results and differential diagnosis

OBJECTIVES CONTINUED

- 7. Role of the health provider:
 - Internal Medicine
 - Obs/Gyn
 - Paediatrics
 - Pathology
 - Surgery
 - GP
 - Dentists –referral system
- 8. Pass exams

DEFINITIONS

ENDOCRINOLOGY is the study of <u>COMMUNICATION</u> and <u>CONTROL</u> within a living organism by means of <u>CHEMICAL MESSENGERS OR HORMONES</u> that are synthesized in whole or part by that organism in order to maintain the <u>HOMEOSTATIC</u> environment of the organism through metabolic processes.

DEFINITIONS and examples

- ► METABOLIC PROCESSES:
- METABOLISM is the study of biochemical control mechanisms that occur in the living organism with example such as:
- Gene expression/reproduction
- Biosynthetic pathways and enzymatic catalysis

DEFINITIONS and examples

- Modification, transformation and degradation of biological compounds
- Biochemical mediations of such compounds
- Means of obtaining, storing and mobilizing energy

EXAMPLES OF PHYSIOLOGICAL FUNCTIONS CONTROLLED BY HORMONES

- Muscular activity
- Respiration
- Digestion
- Haemopoiesis
- Sense organs and functions
- Thought

EXAMPLES CONT.

- Mood
- Behaviour
- Sexuality
- Gametogenesis
- Nourishment
- Parturition
- Others

PATHOLOGICAL CONDITIONS IN ENDOCRINE SYSTEM

- Emergency energy demand
- Starvation
- Infections
- Trauma
- Stress
- Others
- ENDOCRINOPATHIES/HORMONAL IMBALANCE
 - HYPOFUNCTION
 - HYPERPERFUNCTION

OVERALL FUNCTIONS OF THE ENDOCRINE SYSTEM IN MAN

- a) Maintaining the homeostatic environment of the multicellular organism in a constantly changing and threatening environment
- b) Organism can:
 - -Live
 - -Thrive
 - -Reproduce

MODE OF ACTION OF THE HORMONES

- Coordination
- Regulation
- Interactive through e.g. neurohormones, releasing hormones, cytokines with:
- CNS
 - Environment neurohormones
 - Immunological reactions- cytokines
- Stimulatory
- Suppressive---FEED BACK MECHANISMS

FEATURES OF THE ENDOCRINE SYSYEM VS CNS

- 3 Distinguishing features:
 - Speed
 - Mode of conveying the message
 - Self-regulatory
- (i) SPEED is slow compared to the CNS
 - Minutes
 - Days e.g. in the menstrual cycle
 - Months e.g. gestation

FEACTURES OF THE ENDOCRINE SYSYEM VS CNS

- (ii) Information is conveyed via HORMONES or BIOCHEMICAL MESSENGERS
- Circadian rhythm, diurnal rhythm release (24 hours)cortisol
- Pulsatile release
- Cyclic menstrual cycle
- RECEPTORS- specificity to each hormone

AXIS

(iii) Self- regulation AXIS

- Stimulatory (+) and inhibiting (-) substances
- Feedback mechanisms with loops
- Hyperfuction (hyperthyroidism)

Eu. (Euthyroidism)

 \downarrow

Hypofuction (hypothyroidism)

Hypothalamic-anterior pituitarythyroidal axis (H-P-T axis)

- H :Thyrotropin Releasing Hormone (TRH)
 - **→** + -ve
- AP: Thyroid Stimulating Hormone (TSH)
 - +ve -ve
- T: Thyroxine(T4)/Triodothyronine(T3)
- _

AXIS

TSH T4 T3 a) Euthyroidism →TSH →T4 →T3 b) 1° hypothyroidism ↑TSH ↓T4 ↓T3 c) 2° hypothyroidism ↓TSH ↓T4 ↓T3

→ d) 1° hyperthyroidism ↓TSH ↑T4 ↑T3

→ e) 2° hyperthyroidism ↑TSH ↑T4 ↑T3

Interpretation of hormonal profiles

Interpretation of results level

- f) Compensated/sub clinical states
- Sub clinical hypothyroidism \uparrow TSH \rightarrow T4 \rightarrow T3
- Sub clinical hyperthyroidism ↓TSH →T4 →T3

EFFECTS ENDOCRINE SECRETION (HORMONES)

- A specific effect on an organs
- General effects e.g. Thyroid hormones on BMR
- Rates of metabolism of specific substances e.g. CHO

EFFECTS ENDOCRINE SECRETION (HORMONES)

- Growth and development
- Secretory activity of other endocrine glands
- Development and functioning of the reproductive glands
- Sexual characteristics and libido

EFFECTS ENDOCRINE SECRETION (HORMONES)

- Development of personality
- Nervous system functions
- Ability to cope with stress
- Resistance to diseases
- Others

AETIOLOGICAL FACTORS OF ENDOCRINE DISORDERS

Causes of hormonal imbalance:

- Amount secreted
- Failure of the hormonal response
- Structure of the hormone
- Malfunctioning receptor hormonal mechanisms
- Ineffective translational mechanisms
- Dysfunctioning organs
 - Hypofuction
 - Hyperfuction

AETIOLOGICAL FACTORS LEADING TO ENDOCRINOPATHY

- Tumours- adenomas
- Destructive disorders- sarcoidosis, amyloidosis, cancers
- Trauma to the endocrine gland
- Congenital anomalies- lack of enzymes
- Developmental disordersaplasia, agenesis
- Infections-TB, HIV etc

AETIOLOGICAL FACTORS LEADING TO ENDOCRINOPATHY

- Autoimmune diseases- hormone mediated endocrinopathies
- Receptor/hormone defects
- Surgical or irradiation
- Multiple Endocrine Neoplasia (MEN)
- Paraneoplastic Endocrine syndrome (PNES) /ECTOPIC

Investigations of endocrinopathies

- Clinical: symptoms and signs (Hx/PE)
- Laboratory
 - Clinical history is very important for interpretation of results
 - ■Technique of immunoassays
 - Analysis with quality control to give out VALID results
 - ■Interpretation of results

Use of endocrine laboratory

- Screening
- Diagnosis
- Monitoring during treatment
- Monitoring for complications
- Assessing success of treatment
- Research
- Training

Factors to consider in interpreting hormonal levels

- Age= different reference ranges
 - Utero
 - Neonatal
 - Pre-purbertal
 - Pubertal
 - Adults
 - menopause
- Gender = different references for some hormones
 - Female
 - male

Factors to consider in interpreting hormonal levels

- Physiological status= changes over a period of time
 - Pregnancy = gestational age (week/trimester)
 - Menstrual cycle- follicular, mdphase, luteal phase)
- Time- diurnal changes
 - AM, Afternoon, night
 - Stimulation tests

Factors to consider in interpreting hormonal levels

- Assay systems –immunoassays
- Laboratory performance- reliability of results
- Interference in assay system
 - Drugs
 - Diet
- Pathological states- different reference ranges
 - menopause

Endocrine glands and dysfunctions

- Hypothalamus
- Anterior pituitary
- Thyroid gland
- Adrenal cortex
- Adrenal medulla
- Gonads- ovaries and testis

1. Hypothalamic control of anterior pituitary secretions

n	Hormones	Effect on Ant Pituitary
1.	Thyrotropin-releasing hormone (TRH)	(+) TSH & Prolactin
2.	Corticotropin-releasing hormone (CRH)	(+) ACTH
3.	Growth hormone releasing hormone (GHRH)	(+) GH
4.	Growth hormone inhibitory hormone (GHIH) "Somatostatin (SS)"	(-) GH
5.	Gonadotropin-releasing hormone (GnRH)	(+) Gonadotropic hormones (LH, & FSH)
6.	Prolactin releasing hormone (PRH)	(+) Prolactin
7.	Prolactin releasing inhibitory hormone (PRIH)	(-) Prolactin
	"Dopamine"	

2. Anterior pituitary

- Engine for the endocrine system
- Influenced by hypothalamus
- Affects many functions in the body

Anterior Pituitary (AP) Hormones

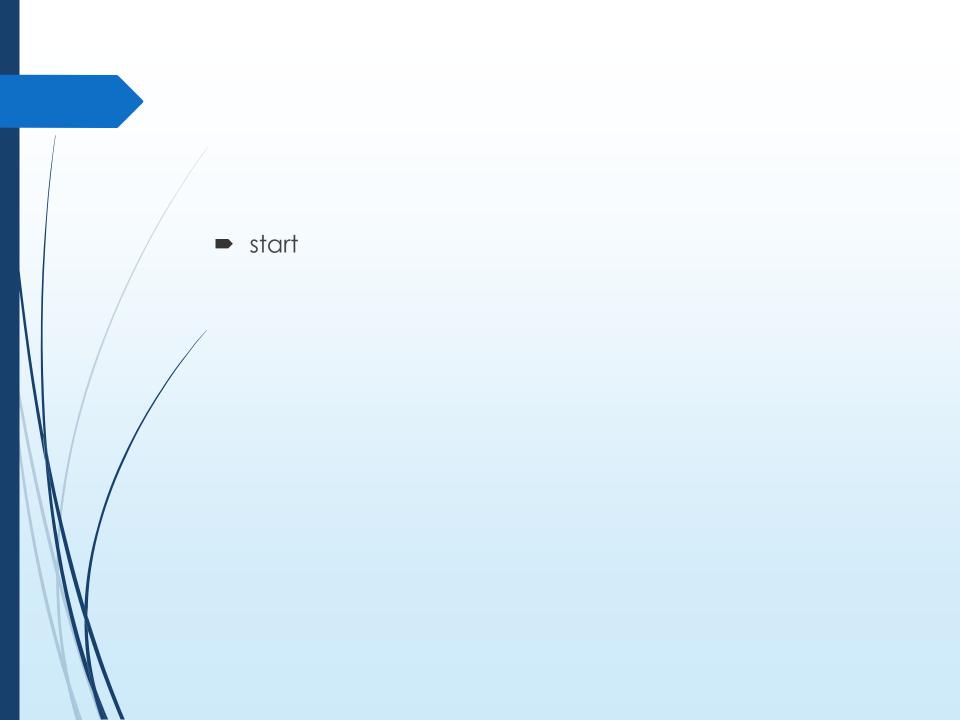
Hormones	Target tissue	Principal action
1. Growth hormone (GH, or somatotropin)	Most tissue	(+) protein synthesis & growth; lipolysis;↑ bl glucose
2. Thyroid-stimulating hormone (TSH, or thyrotropin)	Thyroid gland	(+) thyroid hormones (T4/T3)
3. Adrenocorticotropic hormone (ACTH, or corticotrophin)	Adrenal cortex	(+) glucocorticoids- CORTISOL
4. Follicle-stimulating hormone (FSH,)	Gonads	(+) gamete production, (+) estrogen in ♀
5. Luteinizing hormone (LH)	Gonads	(+) sex hormones; ovulation & corpus luteum formation in females; (+) testosterone in ♂
6. Prolactin (PRL)	Mammary glands	(+) milk in lactating ♀; regulates ♂ reproductive system

Endocrinopathies

1. HYPOTHALAMUS DISORDERS.

- Lack of releasing hormones
 - Leads to hypo functioning AP
- Over production of releasing hormones
 - Leads to hyper functioning AP

2. Dysfunctions of AP.


- A) Hyper- function- Increased production of the hormones- adenomas
- B) Hypo-function-decreased production of the hormones
 - Destruction of AP
 - Isolated deficiency e.g GH- Dwarfism

H-AP Disorders

- A) Hyperfunction of AP:
 - Hyper-prolactinemia-↑PRL- Galactorrhea
 - Acromegaly /giagantism- ↑ GH
 - Cushing's disease ↑ACTH
 - Precocious puberty ↑FSH/LH
 - Secondary hyperthyroidism -↑TSH

H-AP Disorders

- B.HYPOFUCNTIONING AP
 - Panhypopituitarism- All hormones are low
 - Dwarfism- ↓GH
 - Hypogonadotrophic hypogodism-↓FSH/↓LH
 - Secondary adrenocortical insufficiency-JACTH
 - Lack of lactation- no \Prolactin
 - Secondary hypothyroidism-↓TSH

TESTS USED TO ASSESS H-P functions/dysfunction

- Hormones produced in AP:
- Investigate the axis
 - LH/FSH/Estradiol (E2) and Progesterone for females in the axis,
 - ► LH/FSH/Testosterone for males in the axis
 - **TSH**/T4/T3/FT4/FT3

TESTS USED TO ASSESS H-P functions/dysfunction

- ACTH/Cortisol
- GH
- Prolactin (PRL)

TESTS USED TO ASSESS H-P functions/dysfunction

- Other tests to indicate that the AP is functioningindirect tests
 - **►** FT3/FT4----**TSH**
 - **■** E2/P4---**FSH/LH**
 - Testosterone- FSH/LH
 - Cortisol---ACTH
 - Others- semen analysis- male

3. Thyroid disorders

- H-AP-T AXIS-
- Hypothyroidism
 - Primary: ↑TSH ↓ T4 ↓ T3
 - Secondary: \downarrow **TSH** \downarrow T4 \downarrow T3
 - Hashimotos thyroiditis: immune mediated endocrinopathy antibodies are produced e.g Antithyroglobulin Abs

H-AP-T Axis cont.

Hyperthyroidism

Secondary: ↑ TSH ↑ T4 ↑ T3

 Grave's disease- immune mediated endocrinopathy: Thyroid Stimulating immunoglobulin (TSI)

TESTS FOR H-AP-T AXIS

- **■** TSH
- **T**T4
- **TT3**
- **►** FT4
- **►** FT3
- Used more often
- Others

4. H-AP-Adrenal Cortical AXIS

- A) Hyperfunction
- **■** B) Hypofunction
- HYPERFUNTION:
 - Cushing's syndrome :- ↑cortisol
 - ► H- ↑ CRH↑ ACTH↑cortisol
- 4. H-AP- ACTH cortisol

 5. H-AP- ACTH cortisol

 6. H-AP- ACTH cortisol

 6. H-AP- ACTH cortisol

 6. H-AP- ACTH cortisol

 6. H-AP- ACTH cortisol

 7. H-AP- ACTH cortisol

 8. H-AP- ACTH cortisol

 8. H-AP- ACTH cortisol

 9. H-A
 - Adrenal Cortex- ↑cortisol ↓ ACTH
 - Adenoma
 - **■** carcinoma

4. H-AP-Adrenal Cortical AXIS

- **►** HYPOFUCTION: Low cortisol
- Addison's disease- destruction of adrenal cortex ↓
 cortisol, ↑ ACTH

4. H-AP-Adrenal Cortical AXIS

- Congenital adrenal hyperplasia (CAH)
 - Enzyme deficiencies e.g 21 hydroxylase deficiency: overproduction of cortisol and aldosterone precursors e.g 17hydroxy progesterone (17OHP4)
 - Androgens- testosterone
 - Low cortisol and aldosterone levels

Tests used to assess AC axis

- ACTH
- Cortisol
- Aldosterone
- Androgens e.g testosterone

5 Adrenal medullar

- Function is production of catacholamines
 - Adrenaline/epinephrine
 - Nor-adrenaline/nor-epinephrines
- Glucose metabolism

5. Adrenal medullar

- Major disorder:
 - Pheochromocytoma- ↑catecholamines
 - Tests:
 - Vanillyl mandelic acid –VMA in urine
 - Catecholamines and their products in blood or urine

AP-Gonadal axis

- Hormonal imbalance lead to:
- Infertility
 - Axis:
 - Females: GnRH, LH/FSH, Estrogens,P4
 - Males: GnRH, LH/FSH androgens, Testosterone

6. H-AP-Gonadal axis

- **►** Females:
- Primary ovarian failure: ↑ FSH > ↑ LH ↓ Es
 - e.g menopause/premature menopause

6. H-AP-Gonadal axis

- Secondary ovarian failure:
- ► LH ↓ FSH, ↓ Estrogens: hypogonadotrophichypogonadism

6. H-AP-Gonadal axis

- males
- Primary testicular failure: ↑ LH ↑ FSH ↓ androgens
- Secondary testicular failure: LH FSH androgens: hypogonadotrophic-hypogonadism

Assessing H-AP-G axis

- Females
 - LH
 - **■** FSH
 - **■** E2
 - **▶** P4
- Others PRL

Assessing H-AP-G axis

- Males
 - LH
 - **■** FSH
 - Testosterone
- Others PRL
- semen analysis

Evaluation of male infertility

- Semen analysis- semen as a sample
- Parameters assessed:
 - Time of liquefaction
 - Consistence- droplets
 - Volume
 - Concentration of sperms- how many sperms per ejacualate
 - Motility of sperms- speed of sperms
 - Morphology of sperms- shape of sperms
 - Presence of infection- WBCs
 - others

Classification of semen results

- Normozoospermia- all parameters are within reference ranges
- Oligozoospermia- reduced sperm count
- Asthenozoospermia reduced motility
- Teratozoospermia- poor morphology
- combination

7. Pancreatic endocrine disorders

- DM- type 1
 - ↓ Insulin
 - ↓ C-Peptide
- Type II DM
 - → ↑ ↓ Insulin
 - → ↑ C-peptide
- Insulinoma
 - → ↑ Insulin
 - → ↑ C-Peptide

7. Pancreatic endocrine disorders

- Glucagonoma
 - → ↑ Glucagon- hyperglycemia
 - → ↓ glucagon-hypoglycemia

Conclusion

- Enjoy endocrinology
 - Pathology
 - Medicine
 - Surgery
 - Peadiatrics
 - Radiology
 - Dental- REFERRAL SYSTEM

Conclusion

- ALWAYS USE THE LAB WHEN DEALING WITH ENDOCRINOPATHIES!!!!!!!
- MORE IN LEVEL IV