Management of microcytic anemias
 Iron overload disorders

MBCHB IV lecture series

Prof J. Githang'a

Lecture outline

- Microcytic anaemias
 - Aetiology
 - Epidemiology of iron deficiency
 - Clinical features
 - Investigations
 - Treatment
 - Iron overload
 - Sideroblastic anaemias
 - Haemochromatosis

Microcytic Anaemias

- Red cells that are smaller than normal
 MCV < 76.0 fL (80fL)
- Defect in haemoglobin synthesis (cytoplasm affected)

```
Iron + Protoporphyrin
↓
HAEME + GLOBIN (Ribosomes)
↓
Haemoglobin
```

Differential diagnosis of microcytosis.

- 1. Iron deficiency (most impt in our setting)
- 2. Thalassaemias, other haemoglobinopathies
- 3. Blockade of haem synthesis:
 - Lead, Pyrazinamide, Isoniazid, Pyridoxine deficiency
- 4. Sideroblastic anaemias
- 5. Chronic inflammatory states/anaemia of chronic disease (may also give a normocytic normochromic picture)
- 6. Others e.g. Congenital atransferrinemia (very rare)

Epidemiology of ID & IDA

- **Anemia**:HB concentration below the lower limit for a normal population of the same gender and age range
- Iron deficiency: A state in which there is insufficient iron to maintain normal physiologic functions
- IDA is the commonest type of anaemia worldwide especially in the LMIC
- Several factors acting together contribute to its development
- Epidemiological factors are important

Epidemiology contd:

- Prevalence associated with dietary, tradition practices, physical environment, agricultural practices and tropical diseases.
- Age, gender factors
- Socioeconomic status, education influence nutrition
- Prevalence varies from locality to locality in a given country.

EPIDEMIOLOGY cont.

- In developing countries ID is most common in women of childbearing age and young children
- In postmenopausal women and adult men ID is uncommon in absence of bleeding
- ID cause solely by diet in adults is uncommon
- Dietary deficiency is an important cause in young children

EPIDEMIOLOGY cont.

- Poverty, war, poor agricultural practice, irrigation schemes, social and religious factors may be implicated as causes of iron deficient diets
- Iron deficiency predominant in Coastal and arid lowlands, Lake basin, Western Highlands
- Less in Central and mid west highlands

Aetiological factors for IDA

Usually >1 implicated

- Nutritional deficiency
- Increased physiological requirements
- Pathologic causes Blood loss
- Defective absorption

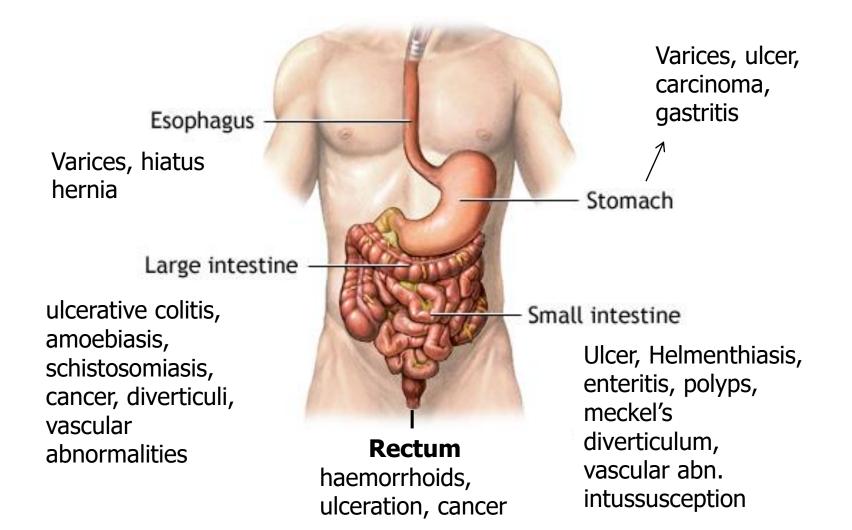
Nutritional deficiency

- Due to iron-poor foods, factors reducing bioavailability of iron
- Especially in children and women (reproductive ages)
- In women poor iron intake compounded by menstrual losses, losses related to reproductive function
 - Increased requirements for iron not met by dietary intake

Aetiological factors for IDA cont....

Increased physiological requirements

- Growth Esp. preterm, neonate, childhood, adolescence
- Menstruation
- Pregnancy: increased RBC mass 35%, iron transfer to foetus, blood loss at delivery


Lactation

 Frequent blood donation (250mg iron lost per unit of blood donated)

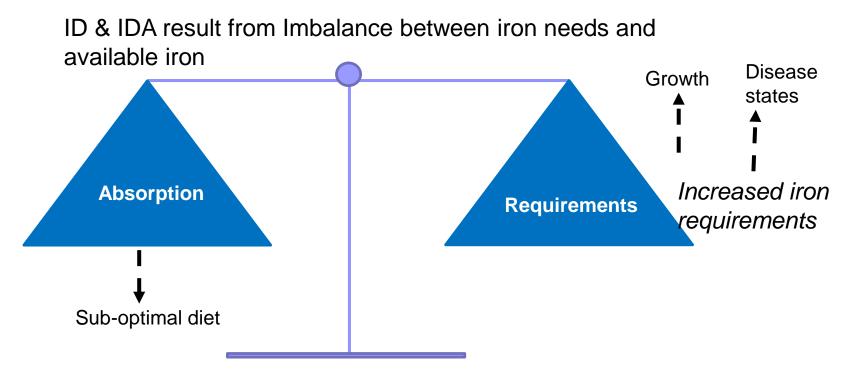
Pathological causes of iron loss

- Blood loss (haemorrhage) Chronic blood loss is one of the most common causes for IDA
- Remember blood loss may be overt or occult
- Gatrointestinal blood loss and uterine blood loss are commoner sites for blood loss

Blood loss from GI Tract

CAUSES OF GENITO-URINARY BLOOD LOSS

- Menstrual bleeding (menorrhagia etc)
- Uterine fibroids
- Neoplasm's
- Renal stones
- Inflammatory renal disease
- Urinary schistosomiasis


CAUSES OF BLOOD LOSS FROM RESPIRATORY TRACT

Recurrent haemoptysis
 Chronic infection e.g. P.T.B.
 Lung cancer
 Valvular heart disease

IMPAIRED ABSORPTION

- Gluten induced enteropathy
- Gastrectomy (partial/total)
- Atrophic gastritis
 - (Intestinal blood loss may also be present)

Iron Balance

Stages of Development of Iron deficiency

Depletion of iron stores (Latent ID)

Reduction in plasma iron content

Iron deficient erythropoiesis

HB reduced, microcytic cells, epithelial cell changes, abnormal cytochrome levels

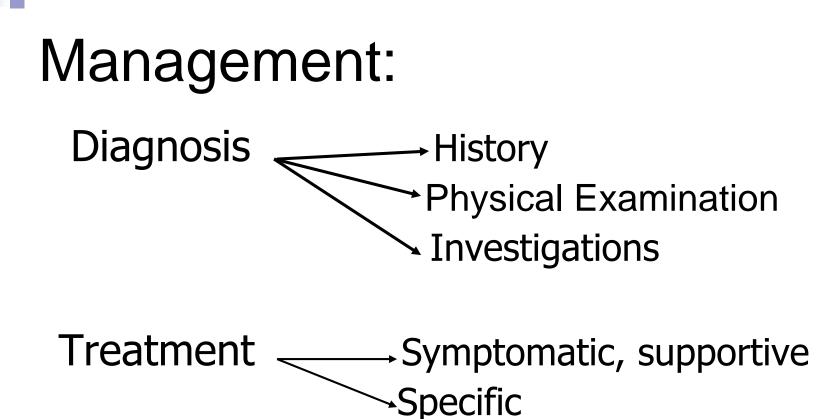
<u>Clinical Features of Iron Deficiency</u>

Clinical features of:

- Anaemia
- Effects of chronic iron deficiency
- Underlying/causative disorder

Epithelial tissue changes:

- Nails- Koilonychia
- Tongue Atrophic glossitis
- Angular stomatitis
- Oesophageal webs- Kelly Patterson syndrome (middle aged females with chronic severe IDA)



Angular stomatitis

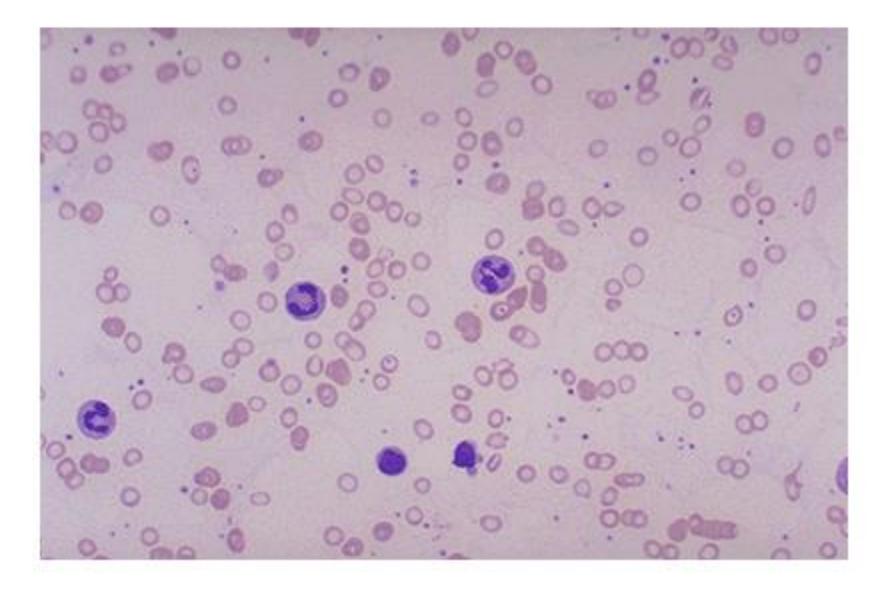
Atrophic glossitis

Case Study

A 21-year-old female is seen in the clinic with a chief complaint of overwhelming tiredness and fatigue. Partial results of TBC:

RBC	3.2x10 ¹² /l
Hgb	6.0 g/dL
Hct	18.7 %
MCV	58.1 fL
MCH	19 pg

Case Study cont.


Question:

This patient's anaemia would be classified morphologically as:

- (a) Normocytic, normochromic
- (b) Microcytic, hypochromic
- (c) Macrocytic, normochromic
- (d) Microcytic, normochromic

LABORATORY FEATURES OF IDA.

- 1. FBC
 - Hb↓
 - HCT \downarrow
 - RBC counts \downarrow
 - MCV \downarrow
 - MCH \downarrow
 - MCHC \downarrow
- WBC Usually N
- PLTs N or ↑
- Retic Low*

Microcytic hypochromic cells.

3. Biochemical Features

- Serum Fe \downarrow < 14 μ mol/l (n= 14-29 μ mol/l)
- Serum ferritin reduced < 15 μ g/l
 - \square N average male 100 $\mu g/l$
 - \square N average female 30 μ g/l
- Transferrin saturation reduced < 33%
 TIBC ↑
- Serum transferrin receptors 1
- Red cell porphyrin 1

Bone marrow iron stores

BME is **not** necessary for uncomplicated IDA

- Iron stain (Perl's reaction) Absent stores
- Iron deficient erythropoiesis (micronormoblastic)

Appropriate investigations for the cause of iron deficiency (guided by Hx/PE):

- Stools exam O/C, occult blood
- Urine examination
- Endoscopy
- Pelvic examination
- U/S, other imaging studies etc.

TREATMENT: Principles-

- Bring Hb to normal
- Treat underlying disease
- Replace iron stores

Treatment Options:

- 1. Treatment with oral iron preps
- 2. Parenteral iron treatment
- 3. Blood transfusion
- Others in conjunction with treatment above includes dietary measures

Oral Iron:

- Preferred mode
- ~ 100 mg elemental iron daily
 - □ Ferrous sulphate : 200mg (67 mg iron) tds
 - Treatment needs to be for up to 6 months to restore iron stores
 - □ Other preps:
 - Combined iron and folate (ranferon)
 - Ferrous gluconate, ferrous fumerate

Care to ensure dose is correct with combinations

 HB rise of 1g/dL at day 14; (or HB should rise at 2g/dl every 3 weeks) and there should be a reticulocyte response

Parenteral Iron:

- Iron sucrose (IV); Iron dextran (IM); ferric gluconate; ferrous carboxymaltose (more recently approved)
- Indications: intolerance to oral iron, chronic blood loss, GI diseases aggravated by oral iron, rapid replenishment needed, impaired absorption

Transfusion

Indications

- □Severe anaemia <5g/dl
- \Box CCF or impending CCF
- □ Pregnant woman about to deliver, etc
- Transfuse packed cells, under diuretic cover

63 year old male with microcytic hypochromic anaemia on oral iron treatment

Initial blood counts

- HB 6.8 g/dl
- Hct 20.9 %
- MCV 64 fl
- MCH 21 pg
- Retic 0.1%

4 weeks later

- HB 7.1 g/dl
- Hct 21.4 %
- MCV 66 fl
- MCH 22 pg
- Retic 5%

Comment on above and give course of action

Feature	Fe def	Chronic Dx
MCV	¥	N/+
sFe	¥	¥
TIBC	t	¥
Transferrin satn	¥	N/†
Transferrin receptor	†	N/↓
BM iron	Absent	Present
Serum Ferritin	¥	N/ †
Rbc protoporph	Ť	Ť

DIFFERENTIAL DIAGNOSIS:

- Distinguish between the other major differentials:
 - □ Anaemia of chronic disorders
 - □Thalassaemias
 - □ Sideroblastic anaemias

IRON OVERLOAD STATES

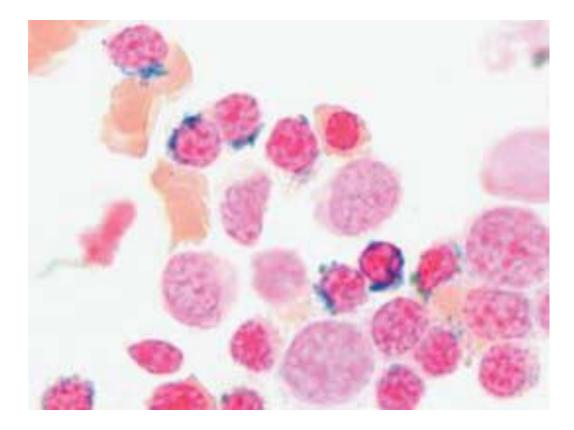
Increased iron absorption:

- Ineffective erythropoiesis e.g. thalassaemias, Sideroblastic anaemias
- □ Hereditary haemochromatosis
- □ Chronic liver disease

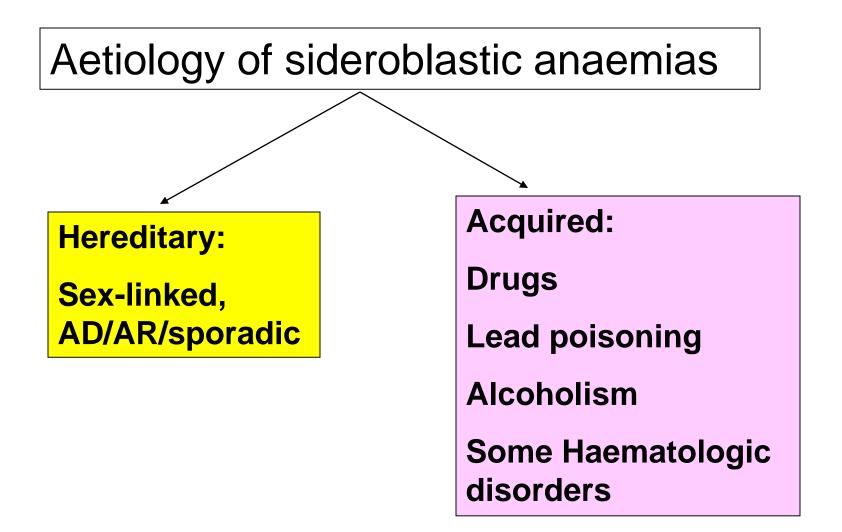
Transfusion siderosis

Iron overload states

Hereditary haemochromatosis


High incidence in Europeans – HFE gene; other genes also involved eg Hepcidin, transferrin receptor, ferroportin etc

High incidence in Black South Africans associated with increased iron consumption in alcoholic beverages and genetic factors


Transfusion related siderosis - Iron deposition initially mainly in the RE cells then later in parenchymal cells.

SIDEROBLASTIC ANAEMIAS.

- Characterized by ringed sideroblasts (RS) in bone marrow
- RS are developing erythroblasts with iron granules in the mitochondria arranged in ring around nucleus
- Disordered porphyrin and abn haeme synthesis is a common

Ring sideroblasts in Bone Marrow

Lab features of iron overload

FBC PBF

- BM †† iron stores, ringed sideroblasts
- BIOCHEMICAL
 - Serum iron †
 - Serum ferritin †
 - □ Transferrin saturation 100%
 - □ TIBC ↓↓
 - Increased storage iron in tissues

Conclusion

- Iron deficiency (ID) is the most common and important cause for microcytic anaemia
- Causes of ID include blood loss, dietary deficiency and malabsorption
- Investigations include TBC, PBF, iron studies and investigation for cause of ID
- Oral iron replacement is treatment of choice
- Iron overload states may be due to conditions associated with increased iron absorption Or chronic transfusion

