ABG interpretation

Remember: $H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$

STEP 1 – Oxygenation

- 1. Assess oxygenation
 - Hypoxic?
 - Significant alveolar-arterial gradient? Alveolar-arterial gradient = partial pressure of oxygen in airways (PAO₂) – partial pressure of oxygen in artery (PaO₂) Where PAO₂ = FiO₂ – (PaCO₂ / kQ) Where kQ (constant) = 0.8

STEPS 2-5

- 2. Determine **pH status**
 - Acidosis (pH \downarrow)
 - O Alkalosis (pH个)

3. Determine respiratory component (PaCO2)

- Respiratory acidosis ($pH\downarrow$, $PaCO_2\uparrow$)
- Respiratory alkalosis (pH \uparrow , PaCO₂↓)

If the $PaCO_2$ doesn't agree with the pH, ignore it until step 5

4. Determine the metabolic component (HCO3- or BE)

- Metabolic acidosis (pH \downarrow , HCO₃- \downarrow)
- Metabolic alkalosis (pH↑, HCO₃⁻↑)

If the $HCO_3^{\text{-}}$ doesn't agree with the pH, ignore it until step 5

5. Combine

• **Primary disturbance**: you know this from the above steps

NB. both the respiratory and metabolic component may have agreed with the pH ie. a 'mixed respiratory and metabolic acidosis/alkalosis'

- o Compensation: If either the respiratory/metabolic component was not consistent with the pH, there is compensation...
 - Acidosis may be compensated by
 - Respiratory compensation: increasing respiratory rate to blow off CO₂ (will result in \downarrow CO₂)
 - Metabolic compensation: increased bicarbonate production by kidney (will result in ↑HCO₃⁻)
 - Alkalosis may be compensated by
 - Respiratory compensation: decreasing respiratory rate to retain CO_2 (will result in $\uparrow CO_2$)
 - Metabolic compensation: decreased bicarbonate production by kidney (will result in \downarrow HCO₃)

Partial compensation = pH not quite back to normal yet; full compensation = pH normal (you cannot over-compensate) NB. You can't fully compensate metabolic alkalosis (you can only hypoventilate a bit) NB. metabolic compensation by the kidneys takes 3 days, respiratory compensation is fast.

• ± Respiratory failure (type 1 = 1 gas abnormal (\downarrow O₂); type 2 = 2 gasses abnormal (\downarrow O₂ + \uparrow CO₂))

Normal values:

- pH: 7.35-7.45
- pCO₂: 4.5-6.0 kPa
- pO₂: 11-13 kPa
- HCO₃⁻: 22-26 mmol/l
- BE: -2 to +2
- SaO₂ >95%
- PaO_2 should ~ FiO_2 % 10
- Alveolar arterial gradient: <10 (increased in emphysema, fibrosing alveolitis, age)
- Lactate <2

Causes of Acid-Base Mismatch

	Acidosis	Alkalosis
Respiratory	 Hypoventilation in: -Lung disease (COPD, severe asthma attack, pulmonary Oedema) -CNS depression -Mechanical lung dysfunction (e.g. obesity, guillain barre, myasthenia gravis) 	Hyperventilation in: -Anxiety -Hypoxia -Acute pulmonary insult (e.g. PE, pneumonia, asthma attack, pulmonary oedema)
Metabolic	Check anion gap = (Na ⁺ + K ⁺) – (Cl ⁻ + HCO ₃ ⁻) Normal = 3-12 INCREASED ANION GAP = new acid added to body (MUDPILES: Methanol, Uraemia, DKA, Propylene glycol, Iron/isoniazid, Lactate, Ethylene glycol, Salicylates) NORMAL ANION GAP = retaining H ⁺ (renal tubular acidosis, Addison's) or loosing HCO ₃ ⁻ (diarrhoea)	Acid loss in: -Chloride responsive: vomiting, diuretics, corticosteroids -Chloride resistant: any hyperaldosterone state (e.g. Cushing's, hypokalaemia)

Causes of Respiratory Failure

<u>TYPE 1 = 1 gas abnormal = $\downarrow O_2$, normal CO₂</u>

Caused by ventilation-perfusion (V/Q) mismatch ie. either:

- Low V/Q: areas of lung are perfused with deoxygenated blood but not ventilated with oxygen (ie. airway obstruction)
 Causes: mucus plug in asthma/COPD, airway collapse in emphysema
- High V/Q: areas of lung are ventilated with oxygen but not perfused with deoxygenated blood (ie. block in blood flow) Causes: PE

The reason CO_2 is normal is that the areas of the lung which are perfused <u>and</u> ventilated can blow off extra CO_2 by increasing ventilation rate (making CO_2 low in this area and high in the area with V/Q mismatch which makes it normal overall). Extra oxygen, however, cannot be absorbed (without giving a higher oxygen concentration) because the maximum amount of oxygen diffuses across the alveolar membrane in normal circumstances anyway.

<u>TYPE 2 = 2 gasses abnormal = $\downarrow O_2$, $\uparrow CO_2$ </u>

Caused by alveolar hypoventilation. This means oxygen cannot get into alveoli and carbon dioxide cannot get out.

Causes: obstructive lung diseases (e.g. COPD), restrictive lung diseases, decreased respiratory drive, neuromuscular disease, thoracic wall disease

Lactic Acidosis

- Lactic acid = a product of anaerobic metabolism
- Types of lactic acidosis
 - TYPE 1 (hypoxic) = produce too much lactic acid (e.g. DKA, starvation, cardiovascular/respiratory depression)
 TYPE 2 (non-hypoxic) = cannot break down lactic acid (e.g. secondary to metformin or poisening)
- LDH = an enzyme involved in anaerobic metabolism pathway (increased in tissue breakdown/turnover e.g. muscle trauma, MI, stroke, haemolysis, cancer, acute pancreatitis, HIV, meningitis/encephalitis)

Common ABG patterns

Situation	рН	CO ₂	HCO3.	0 ₂	Details
Hyperventilation	\uparrow	\downarrow	N	\uparrow	Respiratory alkalosis (lungs overdrive)
Stable chronic COPD	Ν	\uparrow	\uparrow	\rightarrow	Fully compensated respiratory acidosis + T2 RF (hypoxic drive)
Acute COPD exacerbation	\downarrow	$\uparrow\uparrow$	\uparrow	$\downarrow\downarrow$	Partially compensated respiratory acidosis + T2 RF
Stable asthmatic	Ν	Ν	Ν	Ν	
Asthma exacerbation	\uparrow	\rightarrow	Ν	N/↑	Respiratory alkalosis (wheeze $ ightarrow$ anxiety $ ightarrow$ hyperventilation)
Decreased respiratory drive (life-threatening asthma, opiate OD)	\downarrow	1	N	\downarrow	Respiratory acidosis + T2 RF (lungs give up breathing. Hypoxia comes first)
Pulmonary fibrosis	N	N	N	\downarrow	Isolated T1 RF (despite hypoxia, there is no increase in respiratory rate. Likley due to chronic hypoxia desensitisation)
P.E.	\uparrow	\downarrow	N	\downarrow	Respiratory alkalosis + T1 RF (hypoxia drives respiratory rate up causing excess CO ₂ excretion. Can blow off extra CO2 in perfused lung to compensate but can't absorb extra oxygen!)

NB. Respiratory alkalosis $\Delta\Delta$ = hyperventilation ($\uparrow O_2$), asthma exacerbation (normal O_2), PE ($\downarrow O_2$)

© 2013 Dr Christopher Mansbridge at www.OSCEstop.com, a source of free OSCE exam notes for medical students' finals OSCE revision