Chest Radiograph Interpretation

Demographics

- Patient: name, DOB, hospital number, age, sex
- Previous films

Radiograph detail

- Date
- Type (AP or PA, inspiration or expiration, standing or supine)
- Adequacy (*RIPE*)
 - o Rotation: medial borders of clavicles equidistant from a spinous process
 - \circ \quad Inspiration: at least 5-6 anterior ribs visible above diaphragm
 - Picture area: lung apices, costodiaphragmatic recesses, scapula out of the way
 - o Exposure: vertebral bodies should be just visible through lower part of cardiac shadow

Interpretation (ABCDE)

Briefly mention obvious abnormalities first

<mark>A</mark>irway

Tracheal deviation – may indicate rotation, pneumothorax or large effusion

Breathing

- Lung fields (compare in thirds) → SEE NOTES BELOW FOR HOW TO ANALYSE OF ABNORMALITIES
 - \circ Air (in pneumothorax)
 - Fluid (in effusions)
 - o Consolidation (inflammation in infection)
 - Lobar collapse
 - Lesions (e.g. cancer)
- Pleural thickening
- Hilar region for lymphadenopathy, masses and calcification

Circulation

- Heart size should be <50% thorax diameter on PA film or <60% on AP film, increased in heart failure
- Heart position may be displaced if there is lobar collapse or large effusion
- Heart shape and borders (right border = right atrium, left border = left ventricle and atrium)
- Great vessels the aortic knuckle should be visible
- Mediastinal width <8cm on PA film may indicate aortic dissection

Diaphragm

- Position and shape right slightly higher due to liver; flat in COPD
- Costaphrenic angles blunting indicates effusions
- Air below diaphragm indicative of abdominal viscus perforation

Extra things

- Bones trace around ribs for fractures if clinically suspicious
- Soft tissues look for swelling, subcutaneous air, masses, calcification of aorta

To complete

- "To complete my analysis, I would examine previous films and determine the clinical history"
- Summarise and note differentials

Analysing Lung Field Abnormalities

Background knowledge

- Four densities on a chest radiograph
 - White O Bone
 - o Soft tissue
 - O Fat
 - *▼o Air
- Wherever a density changes, a "silhouette" will be seen on the radiograph
 - Lung lobes affected/unaffected can be identified by if their borders are affected
 - Diaphragm = lower lobes
 - Cardiac border = middle lobe (R) / lingula (L)
- The hilum is the only attachment of the lungs

Describing the Abnormality

- Density
 - Bone/soft tissue/fat/air density
 - Uniform or non-uniform (i.e. blotchy) density
 - Radiograph position
 - Left or right
 - o Zone
 - Upper (above 2nd anterior rib)
 - Mid (between 2nd and 4th anterior rib)
 - Lower (lower than 4th anterior rib)
- Anatomical position (lung parenchyma / pleural space)
- Size
- Borders

e.g. "There is a non-uniform soft tissue density in the left lower zone. Anatomically, this is in the lower lobe because the left hemidiaphragm is not visible."

Diagnosing the Abnormality

- Collapse
 - <u>Uniform</u> soft tissue density (i.e. pure white)
 - Affected lobe is smaller
 - Other structures move into empty space (e.g. heart, other lobes \rightarrow fissures in abnormal positions, trachea)
- Consolidation
 - o <u>Non-uniform</u> soft tissue density (i.e. blotchy white)
 - "Perihilar air-bronchogram" = visible bronchioles penetrating the consolidated areas (therefore, it cannot be collapsed)
- Effusion
 - o <u>Uniform</u> soft tissue density (i.e. pure white)
 - o Meniscus sign (also, there may be some less dense white above it as the effusion goes posteriorly)
 - Fluid at lung bases if erect or along posterior thorax if supine
- Pneumothorax
 - Normal lung lobes, but they are partially deflated
 - Uniform air density lateral to the pleura (usually at top if erect)
 - Seen better on an expiration film
 - Look very carefully around pleura!

Differentials • Coll

- Collapse VS consolidation
 - o Collapse is uniform soft tissue density, consolidation is non-uniform
 - o It's consolidation if there's perihilar air-bronchogram
- Effusion VS collapse

0

- o Both uniform soft-tissue density
 - Follow a clear border laterally and look for a meniscus
- Surrounding structures
 - Pulled towards the space of a collapse
 - Pushed away from an effusion

Common Cardiorespiratory Conditions with Multiple Abnormalities

- COPD
 - Hyperinflation (>8 anterior ribs visible) 0
 - Flat hemi-diaphragms 0
 - Decreased lung markings
 - Black lesions (bulla)Prominent hila
- Heart failure (ABCDE) ٠
 - <u>A</u>lveolar shadowing (Bats wings sign)
 <u>B</u>-lines (interstitial oedema)
 <u>C</u>ardiomegaly
 <u>D</u>iversion of blood to upper lobe

 - <u>E</u>ffusion