Interpretation of the Full Blood Count

Red Blood Cells

Most important

Less important

Constituents of the red cell count

- **Haemoglobin (Hb)**: *concentration* of haemoglobin within the blood. Hb is the protein which carries oxygen in the blood and, hence, is the most important value to look at. Low haemoglobin = "anaemia".
- Mean cell volume (MCV): mean volume of the red blood cells ("-cytic"). This is the main method used to classify anaemia.
- Reticulocyte count: concentration of immature red blood cells increased in blood loss and haemolytic anaemia because the bone marrow works harder to replace lost cells.
 - Red cell count (RCC): the concentration of the red blood cells within the blood.
 - Haematocrit (HCT)/ packed cell volume (PCV): volume *percentage* of red blood cells in the blood.
- Mean corpuscular haemoglobin (MCH): mean haemoglobin quantity within the bloods cells affects the colour of the cells ("chromic")
 - o most normocytic and macrocytic anaemias are normochromic
 - most microcytic anaemias are hypochromic (except anaemia of chronic disease)
- Mean corpuscular haemoglobin concentration (MCHC): mean haemoglobin concentration within the bloods cells.
- **Red blood cell distribution width (RDW):** measure of the variation of red blood cell volumes. It is used in conjunction with MCV to determine if anaemia is due to a mixed cause or a single cause. Raised RDW = "anisocytosis".

<u>Anaemia</u>

Anaemia = "a reduced concentration of haemoglobin within the blood"

Other relevant tests

- WCC and platelet count: if both also abnormal, a bone marrow cause is likely
- Reticulocyte count: if raised, the cause is blood loss or haemolytic anaemia
- Mean cell volume (MCV):

Table 1: Causes of anaemia by MCV		
Microcytic (<mark>SIT</mark>)	Normocytic	Macrocytic
Sideroblastic	Acute blood loss	Megaloblastic
Iron deficiency	Haemolytic anaemia	\downarrow B ₁₂
Thalassaemia	Sickle cell	↓folate
		Non-megaloblastic
		Alcohol
		Reticulocytosis
		Liver disease
		Pregnancy
Chronic disease Hypot		yroidism
Bone marrow failure (aplastic anaemia,		
myelodysplasia, leukaemia, myelofibrosis)		

Tests for specific causes

- Haematinics: B₁₂ & folate, ferritin (NB. ferritin is also an acute phase protein)
- Iron studies: iron, transferrin/ total iron binding capacity (TIBC), transferrin saturation, ferritin, soluble transferrin receptor
- TFTs
- Blood film ± bone marrow biopsy (if bone marrow cause/haemolytic anaemia/sideroblastic anaemia suspected)
- **Hb electrophoresis** (if thalassaemia/ sickle cell suspected)
- **Bilirubin** (raised in haemolysis)

Commonest causes

- Iron-deficiency anaemia
 - Physiology: iron is found in red meats (haem iron) and cereal (non-haem iron). In humans, $^{2}/_{3}$ is stored as haem, $^{2}/_{9}$ as ferritin, $^{1}/_{9}$ as haemosiderin. Fe²⁺ (ferrous) is absorbed; Fe³⁺ (ferric) is consumed and used.
 - Causes:
 - Chronic blood loss (1. Menstrual loss; 2. Gl tract loss e.g. malignancy, any '-itis', ulcers, varices; 3. Urinary tract loss)
 - ^demand (pregnancy, growth)
 - \downarrow absorption (coeliacs, gastrectomy)
- upper GI bleeding)

- Poor intake
 Investigations if no cl
 - Investigations if no clear cause: upper GI endoscopy + colonoscopy, coeliacs screen, urine dipstick
 - \circ Treatment: treat cause, ferrous sulphate tablets, transfusion if Hb<70
- B₁₂-deficiency anaemia
 - Physiology: vitamin B₁₂ is found in meat and dairy products. The stomach produces *intrinsic factor* which binds to B₁₂, allowing it to be absorbed in the *terminal ileum*. Body stores last up to 4 years.

- o Causes: pernicious anaemia, malabsorption (e.g. after gastrectomy or terminal ileum disease/resection)
- o Investigations for pernicious anaemia: parietal cell antibodies, intrinsic factor antibodies, Schilling's test
- Treatment: treat cause, hydroxocobalamin (B₁₂) injections 3-monthly

• Folate-deficiency anaemia

- Physiology: folate is found in green vegetables. Body stores only last 4 months (therefore deficiency develops earlier in malabsorption/pregnancy).
- Causes:
 - <u>Dietary</u> (alcoholism, neglect)

 - Malabsorption (coeliacs, pancreatic insufficiency, gastrectomy, crohns)
 - Drugs interfere with metabolism (phenytoin, methotrexate, trimethoprim)
 - Treatment: treat cause, oral folic acid supplements

• Anaemia of chronic disease

0

- Causes: any chronic disease
- Classically: iron \downarrow , TIBC \downarrow , ferritin normal (vs. iron deficiency anaemia: iron \downarrow , TIBC \uparrow , ferritin \downarrow)
- Treatment: treat cause, transfuse if Hb<70
- Haemolytic anaemia
 - Physiology:
 - When red cells are destroyed extravascularly by macrophages (normal process):
 - 1. Hb \rightarrow globulin (which is broken down to amino acids) + haem (which is broken down to <u>bilirubin</u>)
 - 2. Bilirubin is then conjugated by the liver (a rate limited process) and passed to the bowel in bile, where it is converted to urobilinogen
 - 3. Some of this urobilinogen is passed in stool and some is reabsorbed and excreted in urine as <u>urinary</u> urobilinogen
 - When red cells are destroyed intravascularly (abnormal process) free Hb follows one of three pathways:
 - Some binds to <u>haptoglobin</u> (and is removed by liver)
 - Some is filtered by the glomerulus and passed as <u>haemoglobinuria</u> or <u>haemosiderinuria</u>
 - Some is oxidised to methaemoglobulin which dissociates to globin + ferrihaem (most ferrihaem then binds to albumin → methaemalbuminaemia)
 - Inherited causes:
 - Haemoglobinopathies: sickle cell, thalassaemia
 - Membrane defects: hereditary spherocytosis, elliptocytosis
 - Enzyme defects: G6PD deficiency, pyruvate kinase deficiency
 - Acquired causes:
 - Immune mediated: autoimmune haemolytic anaemia, drug-induced haemolytic anaemia, alloimmune haemolytic anaemia
 - Non-immune mediated: DIC, TTP, physical damage by e.g. heart valves, toxins such as lead/uraemia/drugs, malaria, paroxysmal nocturnal haemoglobinuria
 - Investigations to confirm haemolysis:
 - Increased Hb breakdown: 个unconjugated bilirubin, 个LDH (from red cells), 个urinary urobilinogen (on urine dipstick)
 - Increased Hb production: Treticulocytes
 - Intravascular haemolysis: ↓ free haptoglobin, haemoglobinuria (on haematuric urine microscopy), ↑ urinary haemosiderin, red cell fragments on blood film
 - Investigations to find cause:
 - Blood film: sickle cells, schistocytes (microangiopathic haemolytic anaemia), inclusion bodies (malaria), spherocytes/ elliptocytes (hereditary spherocytosis/ elliptocytosis), Heinz bodies (G6PD), bite/blister cells (G6PD), distorted 'prickle' cells (pyruvate kinase deficiency)
 - Direct antiglobulin (Coombs') test (for autoimmune haemolytic anaemia)
 - Osmotic fragility testing (for membrane abnormalities)
 - Hb electrophoresis (for haemoglobinopathies)
 - Enzyme assays (for enzyme defects)

Polycythaemia

Polycythaemia = "increased concentration of red blood cells within the blood"

Causes

- **Relative polycythaemia** (i.e. \downarrow plasma volume)
 - Acute dehydration
 - Chronic (associated with obesity, hypertension, alcohol excess, smoking)
- Absolute polycythaemia (i.e. 个RBC mass)
 - Primary = polycythaemia ruba vera
 - Secondary = due to increased EPO (e.g. RCC) or chronic hypoxia (e.g. COPD, altitude, congenital cyanotic heart disease)

Investigations

- WCC and platelet count (both also raised in primary absolute polycythaemia, but not in secondary absolute polycythaemia)
- ⁵¹Cr Red cell mass study (normal red cell mass in relative polycythaemia; raised red cell mass in absolute polycythaemia)
- Erythropoietin level
- If polycythaemia ruba vera suspected: bone marrow biopsy, JAK-2 mutation

White Blood Cells

Table 2: Causes white blood cell abnormalities			
Constituents of the white cell count	High	Low	
Neutrophil count	Bacterial infection	Post-chemotherapy	
	Inflammation	Agranulocytosis causing drugs (4C's: Carbamazepine,	
	Necrosis	Clozapine, Colchicine, Carbimazole)	
	Corticosteroids	Viral infection	
	Malignancy/ myeloproliferative disorder	Hypersplenism	
	Stress (trauma, surgery, burns)	Bone marrow failure (e.g. in leukaemia)	
		Felty's syndrome	
Lymphocyte count	Viral infection	Viral infection	
	Chronic infections	HIV	
	CLL/ lymphoma	Post-chemotherapy	
		Bone marrow failure (e.g. in leukaemia)	
		Whole body radiation	
Monocyte count	Bacterial infection	Acute infections	
	Autoimmune diseases	Corticosteroids	
	Leukaemias/ Hodgkin's disease	Leukaemias	
Eosinophil count	Allergy (inc. eczema, ABPA)	n/a	
	Parasite infection		
	Drug reactions		
	Hypereosinophilic syndrome		
	Skin diseases		
	Malignancy e.g. Hodgkin's disease		
Basophil count	Some leukaemias/ lymphomas	n/a	
-	IgE mediated hypersensitivity		
	Inflammatory disorders		
	Myeloproliferative disorders		
	Viral infection		

Platelets

Thrombocytopenia

Causes

•

- Decreased production: bone marrow failure, aplastic anaemia, megaloblastic anaemia, myelosuppression
 - Increased destruction/ consumption
 - Non-immune: DIC, TTP, HUS, sequestration in hypersplenism (including portal hypertension e.g. in liver disease)
 - Primary immune: ITP
 - Secondary immune: SLE, CLL, viruses, drugs, alloimmune

Possible investigations

- Blood film ± bone marrow biopsy
- Infection screen e.g. HIV, hepatitis C
- LFTs (live dysfunction can also cause thrombocytopenia)
- LDH (increased in haemolysis and lymphoproliferative disorders)
- Serum vitamin B12 and folate
- Coagulation screen including fibrinogen and D-dimer (if suspect DIC)
- Acute phase reactants (look for evidence of infection)

Treatment

- Treat cause
 - $\circ \quad \text{Immunosuppressants if autoimmune e.g. prednisolone, azathioprine, cyclophosphamide}$
 - Plasmapheresis for TTP/HUS
 - Platelet concentrate transfusion
- Splenectomy

Thrombocythemia

<u>Causes</u>

- Primary: essential thrombocythaemia, other myeloproliferative disorders
- Secondary: bleeding, inflammation, infection, malignancy, post-splenectomy

Possible investigations

- Blood film ± bone marrow biopsy
- Acute phase reactants (look for evidence of infection)
- JAK2 mutation (myloproliferative diseases)

<u>Treatment</u>

- Aspirin (to prevent thromboembolic disease)
- Hydroxycarbamide (if primary cause)