Thaimuta, ZL PhD, SLDP, SMC

Definition

- QC systems monitor the analytical process; detect and minimize errors during the analysis and prevent reporting of erroneous test results.
- -It uses statistical analysis of test system data
- Requires following published rules
 - Westgard Rules

Consequences

- Potential consequences include:-
 - patient misdiagnosis
 - delays in treatment
 - increased costs
- Even a small calibration bias can effect treatment rates:
 - 1% +ve bias in cholesterol result
 - \rightarrow 5% increase in patients exceeding the treatment cut-off
 - 3% +ve bias
 - \rightarrow 15% increase in patient treatment.

What is a Control?

- material that contains the substance being analyzed
 - include with patient samples when performing a test
- used to validate reliability of the test system
 - run after calibrating the instrument
 - run periodically during testing

Types of QC

- Internal
- Daily
- Establishment of reference ranges
- Validation of a new reagent lot and/or shipment
- Following instrument repair

- External
- Proficiency testing
 - Determination of laboratory testing performance by means of intralaboratory comparisons
 - CAP, CLIA, The Joint Commission requirement
 - Must be integrated within routine workload and analyzed by personnel who are running the tests.
 - Ongoing evaluation of results to correct for unacceptable results
 - Used to access employee

Causes of error

- Pre-analytical:-
- errors before the sample reaches the laboratory
- Analytical:-
- errors during the analysis of the sample
- Post-analytical:-
- errors occurring after the analysis

Test results

Variations, Errors, Interferences

- Variations
- <u>Clinical variations</u> within an individual and between individuals
- <u>Analytical variations-</u>no test is perfect. All tests have some degree of variations for repeated measurements of the same sample.
- The final test result is affected by factors that occur
 - Pre-analytically
 - At the time of the test
 - After the test is completed

Why Analytical Results Vary

Inter-individual Variation

- Age
- Sex
- Race
- Genetics
- Long term health status

Pre-analytical Variation

- •Transport
- •Exposure to UV light
- •Standing time before separation of cells
- •Centrifugation time
- •Storage conditions

Pre-analytical errors

- Collection
 - Was the right tube used?
 - Was venipuncture performed correctly?
 - Was the specimen properly stored?
- Identification
 - Was the blood collected from the correct patient?
 - Was the blood correctly labeled?
 - Patient name, ID, date, time of collection, phlebotomist

Specimen identification

- One of the common sources of erroneous lab results is misidentified specimens
- The lab is required to have a clear and rational policy for identifying specimens, and handling misidentified specimens

Prolonged venous stasis

Blocking the flow of blood with the tourniquet with eventually lead to a sieving effect. Small molecules, water and ions are forced out blood vessels and larger molecules are concentrated

- Increases Total Protein, proteins, iron (Fe), cholesterol, bilirubin
- Decreases potassium

Supine vs. sitting or standing

- Going from lying (supine) to upright reduces total blood volume by about 700 ml
- The following may decrease by 5-15% in the supine patient:
 - Total protein
 - Albumin
 - Lipids
 - Iron
 - Calcium
 - Enzymes

Specimens requiring special handling

- Should be placed *immediately* on ice
 - Lactate
 - Ammonia
 - Acid phosphatase
 - Plasma catecholamines

Significantly affected by hemolysis:

- Hemolysis-rupture of red blood cell
 - Can be due to improper collection
 - End result is dumping cellular contents into blood.
 Mild dilution effect in some analytes
- Significant increase in potassium, magnesium, phosphorous

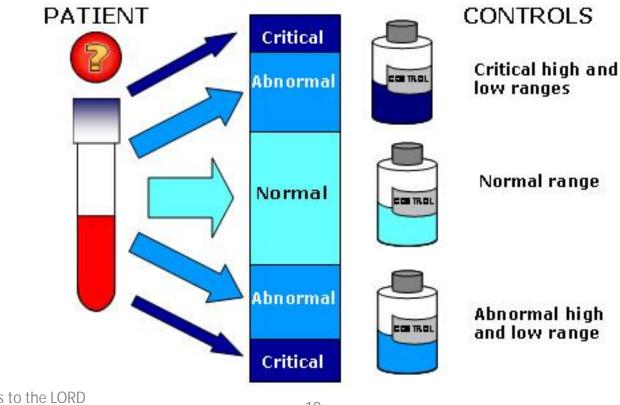
Interferences

- Hemolysis
 - The release of hemoglobin into blood can effect the reactions comprising specific tests
 - Causes serum or plasma to be red and can effect tests that are colorimetric
- Lipemia (lots of fats) and proteinemia (lots of protein)
 - Causes serum or plasma to be become turbid. This can effect colorimetric and turbidometric based tests
 - Also can cause a dilution effect. Fats and proteins are large and displace water in plasma. Can give falsely low results especially for Na

Interferences

- Human Anti Animal Antibodies.
 - Occurs in individual that have been exposed to foreign immunoglobins
 - Can significantly increase or decrease immunoassay based tests since all utilize animal antibodies, particularly mouse. Referred to as Human Anti Mouse Antibodies (HAMA)
 - Tests usually contain reagent to clear HAMA
 - Technicians performs a dilution test to determine if HAMA are present
 - Generally have to send to another lab to test by alternate method or different antibody

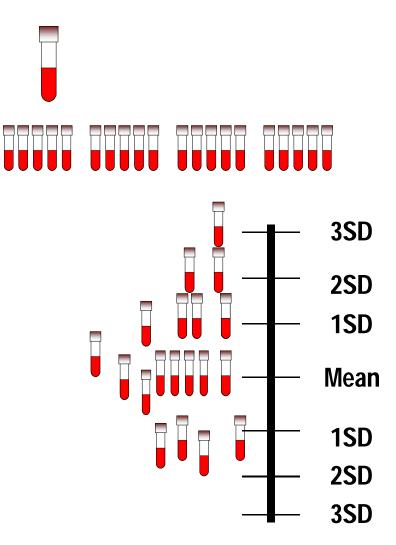
Types of Control Materials


- may be frozen, freeze-dried, or chemically preserved
- requires very accurate reconstitution if this step is necessary

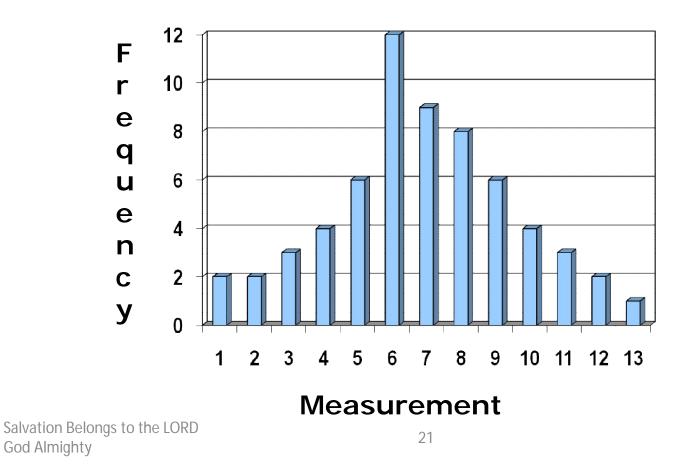
Sources of Controls Materials

- commercially prepared
- made "in house"
- obtained from another laboratory, usually central or reference laboratory

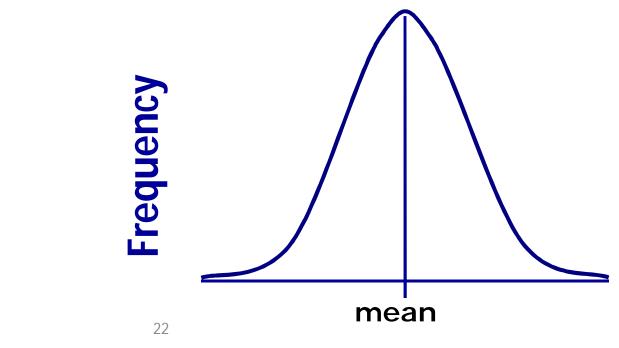
Choosing Control Materials


- values cover medical decision points
- similar to the test sample
- controls are usually available in high, normal, and low ranges

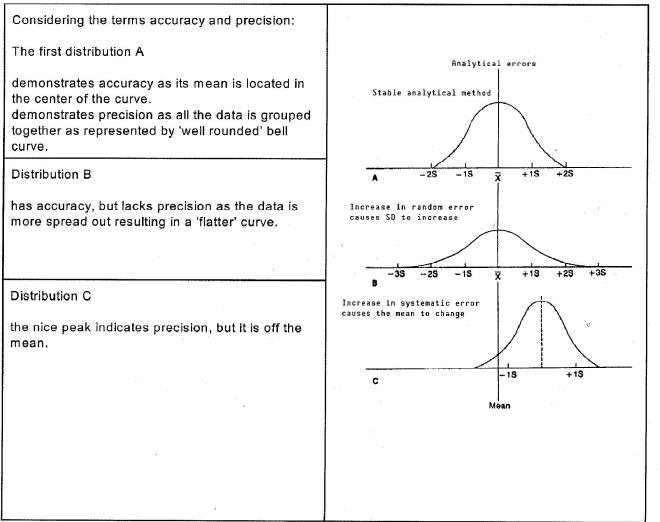
Salvation Belongs to the LORD God Almighty


Steps in Implementing Quantitative QC

- obtain control material
- run each control 20 times over 30 days
- calculate mean and +/-1,2,3
 Standard Deviations


Salvation Belongs to the LORD God Almighty

Measures of Central Tendency Although variable, sets of data are distributed around a central value

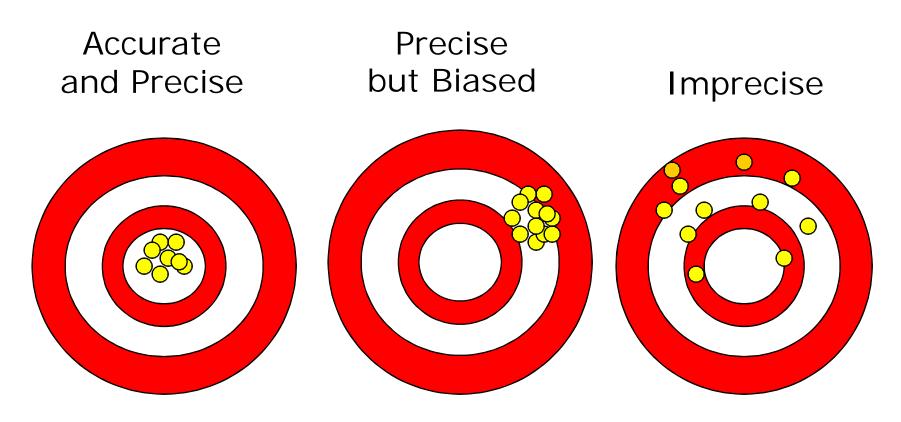


Normal distribution

- all values symmetrically distributed around the mean
- characteristic "bell-shaped" curve
- assumed for all quality control statistics

Salvation Belongs to the LORD God Almighty

Quality Control is used to monitor the **accuracy** and the **precision** of the assay.


What are accuracy and precision?

Salvation Belongs to the LORD God Almighty

Definitions

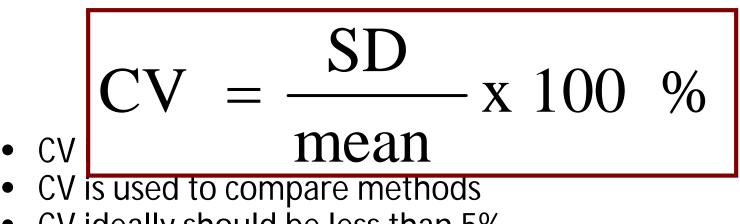
Accuracy	The closeness of measurements to the true value
Precision	The amount of variation in the measurements
Bias	The difference between the expectation of a test result and an accepted reference value

Accuracy and Precision

Accurate = Precise but not Biased

Salvation Belongs to the LORD God Almighty

Standard Deviation (SD)


SD is the principle measure of variability used in the laboratory

$$SD = \sqrt{\frac{\sum (x_1 - \overline{x})^2}{n - 1}}$$

Standard Deviation – Statistical Formula

Coefficient of Variation

The coefficient of variation (CV) is the SD expressed as a percentage of the mean.

• CV ideally should be less than 5%

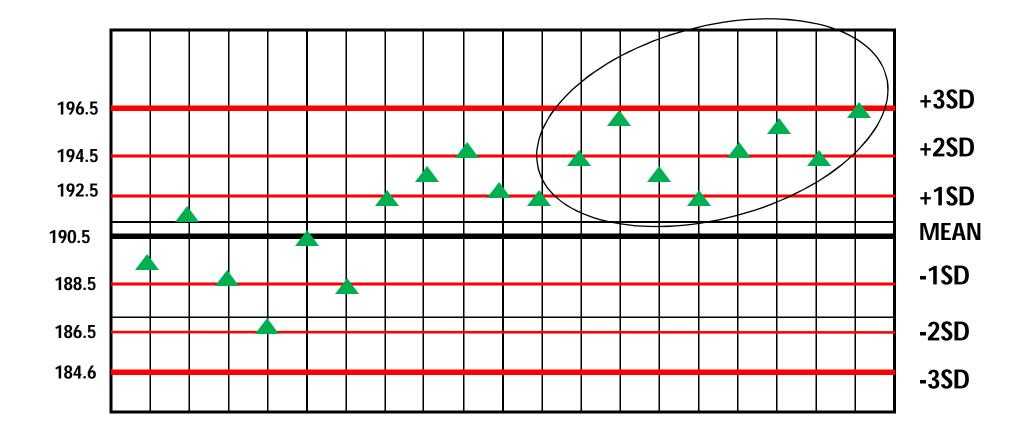
Statistics for Quantitative QC

assay control material at least 20 data points over a 20-30 day period ensure procedural variation is represented calculate mean and \pm 1, 2 and 3 SD

Number of Controls

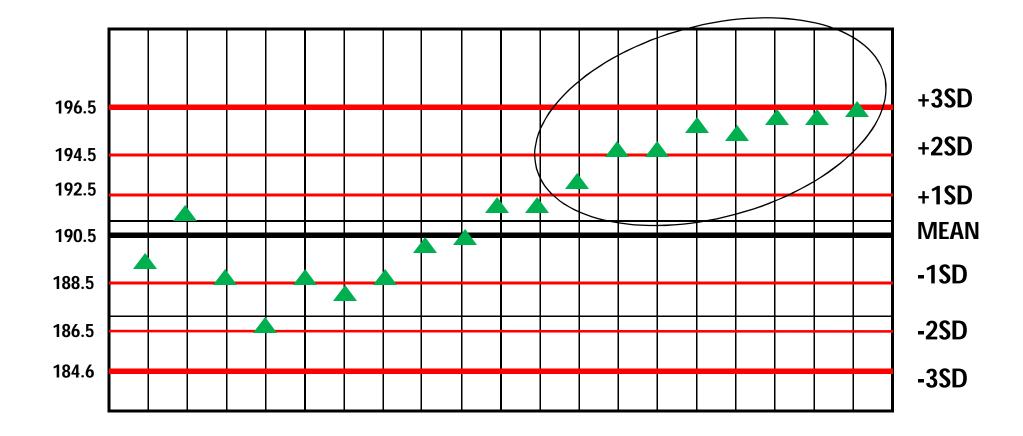
Interpretation depends on number of controls run with patients' samples.

- **Good**: If one control:
 - accept results if control is within ± 2SD unless shift or trend
- **Better**: If 2 levels of controls
 - apply Westgard multirule system


Detecting error

- **random error**: variation in QC results with no pattern- only a cause for rejection if outside 2SDs.
- **systematic error**: not acceptable, correct the source of error

Examples:

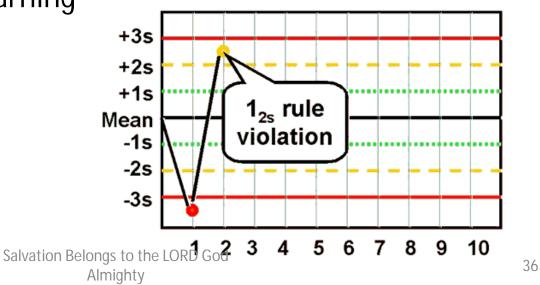

- shift-control on one side of the mean 6 consecutive days
- trend_control moving in one direction_ heading toward an "out of control" value

Levey-Jennings Chart Shift

Salvation Belongs to the LORD God Almighty

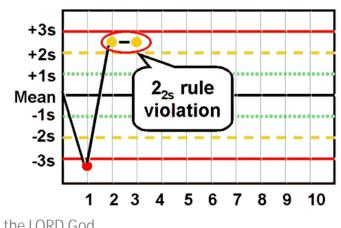
Levey-Jennings Chart Trend

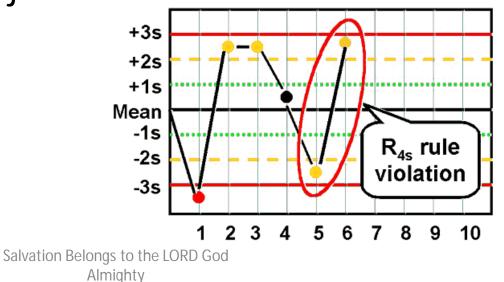
Salvation Belongs to the LORD God Almighty


Other rules WESTGARD RULES

Salvation Belongs to the LORD God Almighty

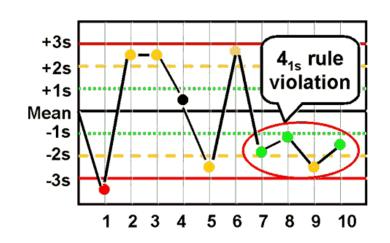
- Common Westgard rules
 - -1_{3s}
 - A single control measurement exceeds three standard deviations from the target mean
 - Action Reject


- Common Westgard rules
 - -1_{2s}
 - A single control measurement exceeds two standard deviations from the target mean
 - Action must consider other rule violations
 - This is a warning

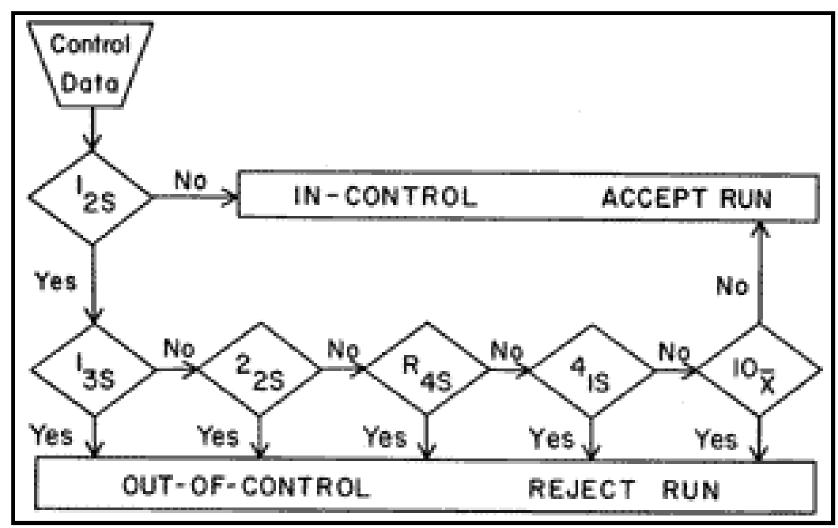

• Common Westgard rules

 -2_{2s}

- Two consecutive control measurements exceed the same mean plus 2S or the same mean minus 2S control limit.
- Action Reject



- Common Westgard rules
 - $-R_{4s}$
 - One control measurement in a group exceeds the mean plus 2S and another exceeds the mean minus 2S.
 - Action Reject



38

- Common Westgard rules
 - 4_{1s}
 - Four consecutive control measurements exceed the same mean plus 1S or the same mean minus 1S control limit.
 - Action Reject

Westgard Multirule QC

Salvation Belongs to the LORD God Almighty

- Other QC checks
 - Delta checks
 - Compares a current test result on a patient to last run patient test, flagging results outside expected physiological variation.
 - A 1981 study concluded delta checks are useful, despite a high false-positive rate.
 - But another study suggests looking at delta checks with tests that have a high clinical correlation (e.g., ALT and AST)

If QC is out of control

• STOP testing

- identify and correct problem
- repeat testing on patient samples and controls after correction
- Do not report patient results until problem is solved and controls indicate proper performance

Solving out-of-control problems

- identify problem
- refer to established policies and procedures for remedial action

Possible Problems

- degradation of reagents or kits
- control material degradation
- operator error
- failure to follow manufacturer's instructions
- an outdated procedure manual
- equipment failure
- calibration error

THANK YOU