Chi-square and Fisher's exact tests

Dr. M.M. Mweu,
Level V MBChB Biostatistics,
21 November, 2019

Chi-square test

- Is a significance test of association
- Association means that knowing the value of one variable tells us something about the value of the other variable
- Two variables are said to be associated if the distribution of one variable varies according to the value of the other variable

Example

Water source	Ethnic group			
	Α	В	С	Total
Well	37 (57%)	18 (33%)	24 (50%)	79
Spring	14 (22%)	17 (31%)	14 (29%)	45
River/Stream	12 (19%)	19 (35%)	10 (21%)	41
Total	63 (100%)	54 (100%)	48 (100%)	165

• In the example, ethnic group (predictor) & water source (outcome) are associated if the distribution of water source varies between the ethnic groups

Hypothesis:

 $H_0 = No$ association i.e. distribution of water usage is same regardless of ethnic group $H_a = There's$ an association i.e. distribution of water usage differs across the ethnic groups

$$x^2 = \sum \frac{(O-E)^2}{E}$$

Where
$$E = \frac{Row total \times Column total}{Overall total}$$

$$x^2 =$$

$$\frac{\left(37 - \frac{79 \times 63}{165}\right)^{2}}{\frac{79 \times 63}{165}} + \frac{\left(18 - \frac{79 \times 54}{165}\right)^{2}}{\frac{79 \times 54}{165}} + \frac{\left(24 - \frac{79 \times 48}{165}\right)^{2}}{\frac{79 \times 48}{165}} + \frac{\left(14 - \frac{45 \times 63}{165}\right)^{2}}{\frac{45 \times 63}{165}} + \frac{1}{165}$$

$$\frac{(17 - \frac{45 \times 54}{165})^2}{\frac{45 \times 54}{165}} + \frac{(14 - \frac{45 \times 48}{165})^2}{\frac{45 \times 48}{165}} + \frac{(12 - \frac{41 \times 63}{165})^2}{\frac{41 \times 63}{165}} + \frac{(19 - \frac{41 \times 54}{165})^2}{\frac{41 \times 54}{165}} + \frac{(10 - \frac{41 \times 48}{165})^2}{\frac{41 \times 48}{165}} = 8.46$$

Chi-square test

$$df = (r - 1) \times (c - 1)$$
$$df = (3 - 1) \times (3 - 1) = 4$$
$$x_{0.05}^{2} = 9.49$$

8.46 < **9.49** so accept H_0 that there's **no assocition betwn water usage and ethnicity**

Uses of x^2 :

- ☐ If total sample size n > 40 and smallest expected value ≥ 5
- \square If *n* is bewtn 20 & 40 and smallest expected value is at least 5
- Otherwise use Fisher's exact test

- As Chi-square, it's a significance test of association
- Calculates the *exact probability* of observing cell values in a 2 by 2 table given that the *row* & *margin totals are fixed*

Example

	Disease +	Disease -	
Factor +	4 (a)	I (b)	5 (a+b)
Factor -	4 (c)	6 (d)	10 (c+d)
	8 (a+c)	7 (b+d)	15 (n)

$$p = \frac{\binom{a+c}{a}\binom{b+d}{b}}{\binom{n}{a+b}} = \frac{\binom{8}{4}\binom{7}{1}}{\binom{15}{5}} = \frac{70 \times 7}{3003} = \mathbf{0.163}$$

Hence **no association** betwn factor and disease