MBCHB VI STUDENTS CRANIOFACIAL TRAUMA LECTURE NOTES

VIRTUAL LECTURE GIVEN ON 22/03/2021

OVERVIEW OF CRANIOMAXILLOFACIAL TRAUMA

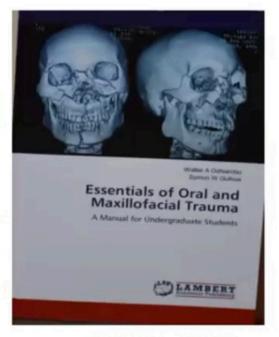
PROF SW GUTHUA 22/03/2021 MBCHB VI

LECTURE OBJECTIVES:

At the end of this lecture, learners are expected to;

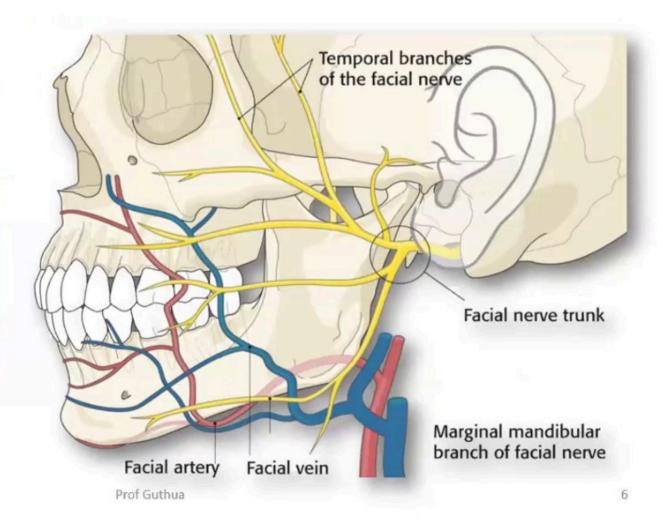
- 1.Outline the common aetiological factors in Craniomaxillofacial Injuries (CMFI).
- 2.Discuss the clinical presentation and emergency care of patients presenting with Craniomaxillofacial Injuries (CMFI).
- 3. State the various investigations in patients presenting with Craniomaxillofacial Injuries (CMFI).
- 4. Outline the various management modalities of patients presenting with Craniomaxillofacial Injuries (CMFI) including fractures of the upper face, midface and Mandible.
- State the complications that may arise from Craniomaxillofacial Injuries (CMFI).

CLINICAL PRESENTATION AND ANATOMY


ANATOMY

BOOK (2018/2019): ESSENTIALS......

......



Reference BOOK

ANATOMY: FACIAL NERVE

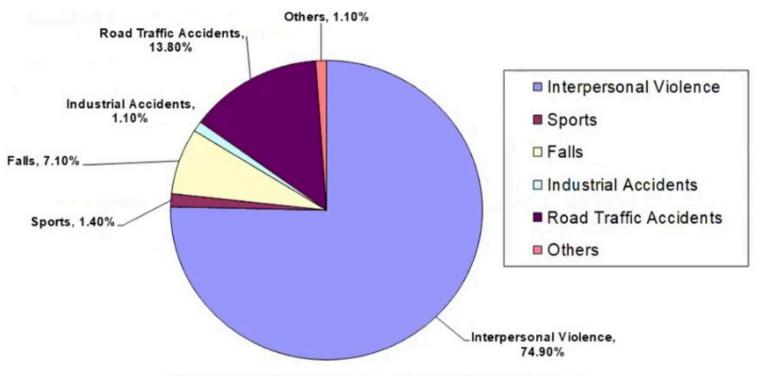
Functions of the Facial Skeleton

- protect the brain
- house and protect the sense organs
- •facilitate eating, facial expression, breathing, and speech
- facial identity

OCCURRENCE OF FACIAL FRACTURES (In Order of Frequency)

- Nasal Bones
- Mandible (10th in the body)
- Zygomatic Arch
- Maxilla
- Zygomatic Complex

37


AETIOLOGY OF CRANIOMAXILLOFACIAL INJURIES

- Interpersonal Violence
- Road Traffic Accidents (RTA)
- Fall
- Hit by a Sharp Object
- Gunshot
- --(RTC & Gunshot Cause More Severe Injuries)
- Others (Animal Injuries)

CRANOIMAXILLOFACIAL INJURIES: AETIOLOGY IPV

- FIGTHTS: ASSAULTS
- FLYING OBJECTS THROWN
- SPORTS (CONTACT SPORTS-RUGBY, ETC)
- DOMESTIC VIOLENCE (SPOUSE/PARTNER/CHILDREN)
 - -GUNSHOT (DOMESTIC VIOLENCE / ASSAULT)
 - -HUMAN BITES

FACIAL INJURIES DISTRIBUTION OF ETIOLOGIC FACTORS

Mwaniki & GUTHUA, 1990, British Journal of Oral Maxillofacial Surgery

DISTRIBUTION OF INJURIES ACCORDING TO ETIOLOGICAL FACTORS

(MFI STUDY 2002)

FACTOR	FREQUENCY	%
Unknown RTA IPV Occupational Falls Sports Others	2 53 77 1 10 5	1.3 34.9 50.7 0.7 6.6 3.3 1.3
Not indicated	2	1.3
TOTAL	152	100.0

(AKAMA, M.K., GUTHUA, SW. etal, Afr. Journal of Oral Health Sciences. Vol 4 (3) Nov/Dec. 2003)

12

11

OCCURRENCE AND PATTERN OF MAXILLOFACIAL INJURIES CAUSED BY MOTORCYCLE CRASHES PRESENTING AT TWO MAJOR REFERRAL HOSPITALS IN NAIROBI, KENYA

Simba Nyameino, BDS, MDS¹ ;Fawzia Butt, BDS, FICD, FDSRCS, MDS-OMFS^{2,3} Symon W. Guthua, BDS ,MMED SC, DOMS, FIAOMS, FCS⁴ Francis Macigo, BDS, MPH⁵ Mathew Akama⁴

Journal of Craniomaxillofac Trauma Reconstruction Open 2018;2:e9–e14.

¹Department of Surgery, Kisii General Hospital, Kisii, Kenya

²Department of Human Anatomy, University of Nairobi College of Health Sciences, University of Nairobi, Kenya

³Department of Oral and Maxillofacial Surgery, University of Nairobi, Nairobi, Kenya

^{*}Department of Oral and Maxillofacial Surgery, University of Nairobi, Nairobi, Kenya

⁵Department of Periodontology/Community and Preventive Dentistry, School of Dental Sciences, University of Nairobi, Nairobi, Kenya

FACIO-MAXILLARY FRACTURES IN CHILDREN

Low incidence

- Difference in size between cranium / facial skeleton (sinuses, protective thick adipose layer)
- About 5% of all facial fractures (less in children < 5 years of age; 1 %)
- ■Common fractures (falls, play, RTA, sports)
- ✓ Nasal bones (46.6%)
- ✓ Mandible (24%; condyle: 9%)
- ✓ Orbital blow-out (1%: Hall et al 1983)

WHY LOW INCIDENCE?

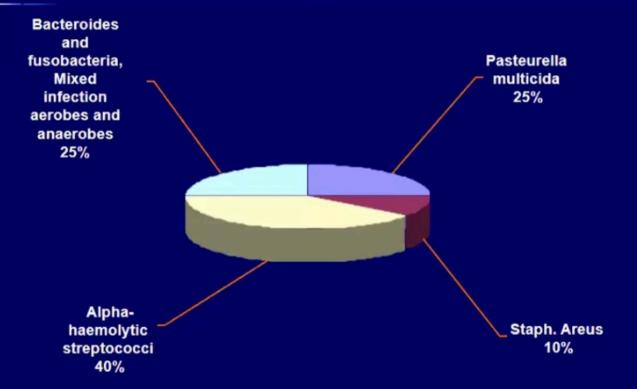
- Relatively smaller facial size
- Flexible bony skeleton
- Incomplete formation of the maxillary sinuses

ROAD TRAFFIC CRASH (ACCIDENT)-RIFT VALLEY

01/03/2019

MAIN FACTORS THAT CAUSE RTA

- ■Human errors (85% of MVAs)
- Mechanical factors (6% of RTAs) = General condition of the vehicle
- ■Traffic environment (9% of RTAs) = About 1.2% due to road defects


ANIMAL BITES

- ■Unvaccinated domestic animals (dogs, cats)
 ✓ANTIRABIES PROPHYLAXIS (Flanigan et al 1985, Corey 1983)
- Farm Livestock (rabbits, rodents) rarely carry rabies
 - ✓ ANTIRABIES PROPHYLAXIS (Flanigan et al 1985, Corey 1983)

CHEETAH

ANIMAL BITES MICROBIOLOGY

PROPHYLAXIS

Tetanus & Rabies

- All patients (n=10) 0.5ml T.T
- Mutilated Injuries (n=5) from lions, leopards
 --- Vaccinated against Rabies

VACCINATION

Rabies and Mutilated Injuries (n=4)

 Inactivated Rabies vaccine prepared on Verocells (Verorab)

Dosage: 5 x 0.5ml (approx 2.5 I.U)

Route: I.M (Deltoid)

Course: Days D0, D3, D7, D14 and D28

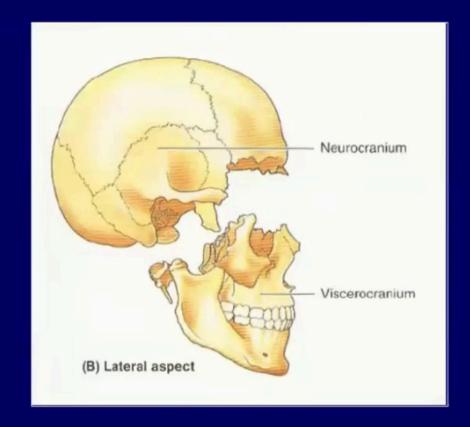
Booster Dose: D90 (optional)

REFERENCES

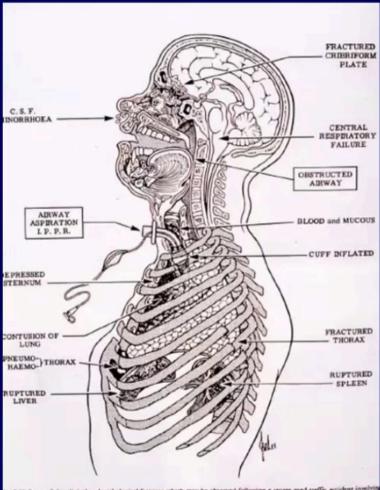
- GUTHUA, S.W.: Complex maxillofacial trauma caused by Wild Animals in Kenya; Int. J. Oral & Maxillofacial. Surg. 1999; Suppl. No.1. 28, 81. (Abs).
- GUTHUA, SW, KAMAU, M.W. and MACIGO F.G. Severe Cranio-Maxillofacial injuries caused by wild animals in Kenya (case series). African Journal of Oral Health Sciences (2016); vol. 2 (3): 11 14.

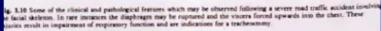
ESTABLISHING A DIAGNOSIS

DIAGNOSIS

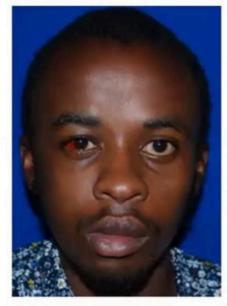

- •History (event(s) prior to trauma)
- AMPLE
- ■Clinical Exam
- ■Signs and Symptoms
- AppropriateInvestigations

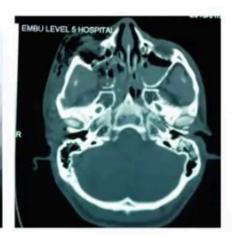
GUTHUA, S.W. 1990


Viscerocranium


- Nasal
- Lacrimal
- Maxilla
- Palatine
- Vomer
- Zygomatic
- Mandible

MFI – LIFE THREATENING INJURIES



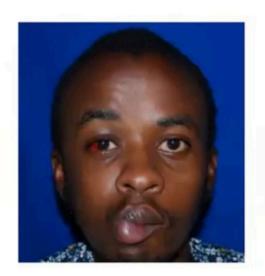


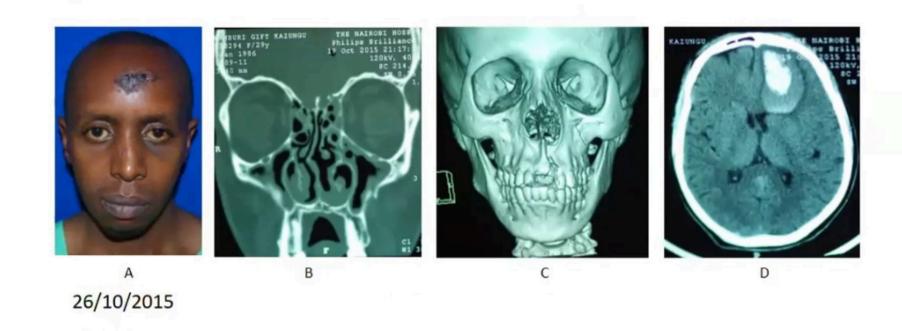
EXAMINATION: MOTORCYCLE ACCIDENT

08/02/2018

Prof Guthua

EXAMINATION: MOTORCYCLE ACCIDENT





CRANIAL BASE FRACTURE



SEVERE HEAD INJURY WITH RT FRONTAL CONTUSION AND INTRACEREBRAL HAEMATOMA

BLOWOUT ORBITAL MEDIAL WALL WITH ORBITAL AEROCELE

At presentation

Prof Guthua

Prof Guthua

MANDIBULAR FRACTURES AND FACIAL INJURIES: Motorbike accident

В

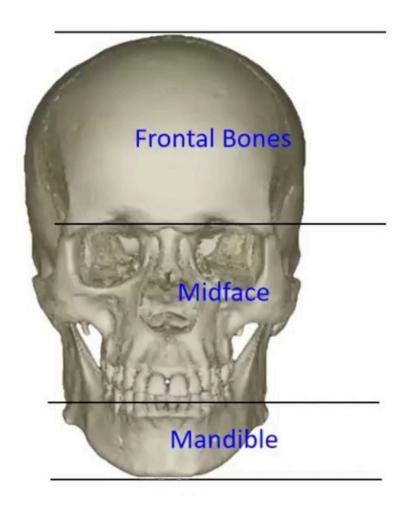
22/01/2020

DISTRIBUTION OF OTHER ASSOCIATED INJURIES

(MFI STUDY 2002)

ASSOCIATED FRACTURE/INJURY	FREQUENCY	%
Skull fracture and head inju	y ₄₉	57.6
Upper limbs	14	16.5
Lower limbs	13	15.3
Ribs / thorax	3	3.5
Others	6	7.1
TOTAL	85	100.0

(AKAMA, M.K., GUTHUA, SW. etal, Afr. Journal of Oral Health Sciences. Vol. 4 (3) Nov/Dec. 2003)


MANAGEMENT

Facial Skeleton

3 Areas Frontal

Midface

Mandible

EVALUATION AND CARE OF TRAUMATIZED PATIENTS (ATLS PROGRAM)

STMP = Structured Trauma Management Program:

Dr James Styner, Orthopaedic Surgeon, USA, 1978

ATLS principles

- Developed in 1978 to ensure <u>uniformity in the triage and treatment</u> of injured patients
- ATLS consists of 5 basic principles:
 - 1. Assessment of Airway, Breathing and Ventilation, Circulation, Disability, and Exposure;
 - 2. Do no harm;
 - 3. Early treatment of life-threatening injuries;
 - Frequent assessment;
 - 5. Surgeon maintenance of a high index of suspicion for injuries.

Advanced Trauma Life Support (ATLS) Student Course Manual 9th Edition. American College of Surgeons, 2012.

EVALUATION AND CARE OF TRAUMATIZED PATIENTS (ATLS - STMP)

I. PRIMARY SURVEY ABCDE

- A Airway maintenance and C-spine control /Protection
- B Breathing and Ventilation
- C Circulation with Bleeding control (haemorrhage control)
- D Disability / Neurological Assessment
- E Exposure and Environmental control

II. RESUSCITATION

Management of life- threatening problems

III. SECONDARY SURVEY

- Total evaluation of patient (head, skull, maxillofacial, neck, chest abdomen, perineum / rectum, etc.
- Head-to-Toe evaluation of Trauma patient

IV. TERTIARY SURVEY / DEFINITIVE CARE

Careful Management of Injuries: head, thorax, spine & spinal chord, abdomen, etc.

Adopted from Structured Trauma Management Program (STMP) Dr. James Styner ,Orthopaedic Surgeon

TRIMODAL PATTERN OF DEATH FOLLOWING TRAUMA

(TRUNKEY, DONALD, USA).

1ST PEAK (IMMEDIATE DEATH) (△50% of trauma deaths)

- Wide spread brain or cervical cord damage.
- Severe damage to the heart or the major blood vessels.
- Multiple injuries (prevention ROAD SAFETY)

2nd PEAK (EARLY DEATHS (30% of trauma deaths)

First few hours after injury.

Golden hour (s) of trauma

Deaths here are preventable and are the main target of ATLS.

Causes 2ND PEAK

- Facial injuries leading to Airway obstruction
- Lethal disruption of breathing mechanism.
- Collapse of the circulation following heavy blood loss into the body cavities or multiple fractures of large bones like the femur.
- CNS dysfunction usually due to intracranial bleed.

3RD PEAK (LATE DEATHS) (← 20% of trauma deaths).

- After days or weeks after injury.
- Severe infection (sepsis)
- Multiple organ failure (the heart, the kidney, the liver, the lungs, the brain or the haemopoietic system).

PRIORITIES DURING INITIAL ASSESSMENT

- A AIRWAY maintenance with C-spine protection
- B BREATHING and Ventilation
- C CIRCULATION with hemorrhage control
- DISABILITY (neurologic evaluation)
- E EXPOSURE and environmental control

MANDIBULAR FRACTURES AND THE AIRWAY

Prof Guthua and Ndungu

LOSS OF TONGUE SUPPORT AND AIRWAY OBSTRUCTION

NORMAL ANATOMY
Rohen and Yokochi,1988

LOSS OF TONGUE SUPPORT
Rowe and Williams, 1985

Complex Injuries : MCCRASH

CERVICAL SPINE FRACTURES: Control

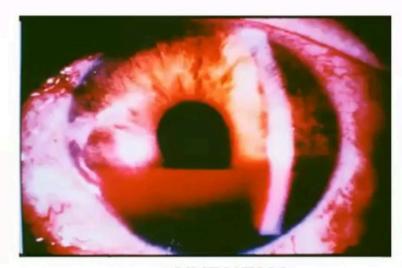
1987

1989

Sept 2012

(Cont.)


Periorbital Soft Tissue Repair



Missing Right Upper Eyelid & Eyebrow

EYE EXAMINATION MANDATORY IN CMF TRAUMA: EYE INJURY

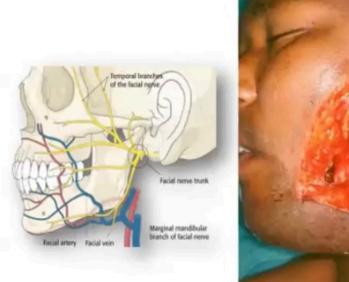
EYE EXAMINATION

HYPHEMA

MULTIDISCIPLINARY APPROACH

MAIN OBJECTIVES (MF INJURIES)

- Preservation of vision (sight)
- Restoration of function
- Restoration of aesthetics
- To satisfy the psychological needs


ESSENTIAL ELEMENTS IN GOOD LACERATION REPAIR

- Secure haemostasis
- Remove foreign bodies
- Excise dead tissues (not radical debridement –H&N)
- Accurate apposition of the remaining tissues in their correct anatomical position (avoid strangulation –approximate!)

ESSENTIAL ELEMENTS IN GOOD LACERATION REPAIR

- Obliterate all dead space
- Repair of injured specialised structures before wound closure
- ■(Face: Facial Nerve & Parotid Duct)

DEEP CUT IN THE MIDFACE

BEFORE ASSAULT

AFTER

GOALS OF FRACTURE MANAGEMENT

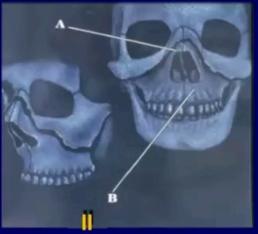
- Achieve anatomical reduction & stabilization
- Re-establish pretraumatic functional occlusion
- Restore facial contour and symmetry
- Balance facial height & projection (reduction -closed or open

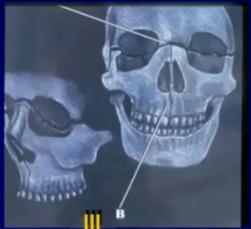
FRACTURES OF THE MID-FACE

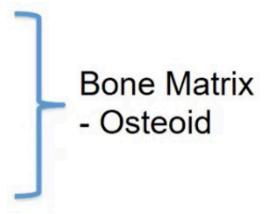
- Le Fort I, II, III
- Zygomatic Complex + Arch
- Nasal Bones
- Nasoethmoidal
- Naso -orbito -ethmoidal
- "Blow-out"

Facial Buttress System

- Nasomaxillary
- Zygomaticomaxillary
- Pterygomaxillary


- ■Sup. orbital rim
- ■Inf. orbital rim
- Alveolar ridge


CLASSIFICATION OF MIDFACE INJURIES:



Prof Guts.w.g

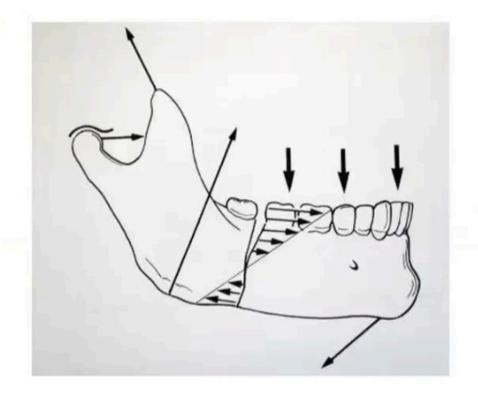
82

Bone Biology

- Support Cells (osteoblasts and osteocytes)
- Remodeling Cells (osteoclasts)
- Collagen (Type I) and proteins
- Inorganic minerals 65% (HA)

BONE HEALING

- STIMULATION OF THE ACTIVITY OF OSTEOBLASTS (PIEZOELECTRIC EFFECT).
- COMPRESSION AND ELONGATION (Leads to Electrical changes at the boundaries of Hydroxyapatite Crystals – Stimulates the Osteoblasts)
- UNDERSTAND THE MOLECULAR LEVEL ACTIVITY.


Mandible

- Only mobile bone in CF skeleton
- Main stress bearing bone
- Closest to a tubular bone with thick cortical shell and relatively decreased blood supply

Biomechanics

 Superior border of the mandible is the TENSION zone

 Inferior border of the mandible is the COMPRESSION zone

RIGID FIXATION

 Rigid fixation is a concept and is used for anatomic reduction and adequate fixation for function, not just the use of plates and screws

COMPOUND COMMINUTED MANDIBULAR FRACTURES:

Exposed Fractures

Two level Fixation

SURGERY

- Open Reduction and Rigid Internal Fixation (ORIF)
- Two level Fixation:
 - Upper border=2.0mm Titanium plate&2.0 mm screws(6.0mm)
 - Lower border=2.4 mm weight bearing plate&
 2.4mm srews(14,16,and 18 mm.)

COMPOUND COMMINUTED MANDIBULAR FRACTURES:

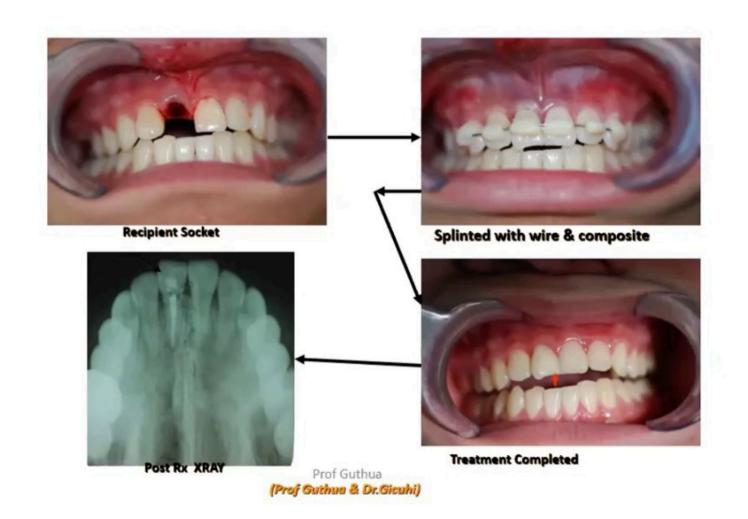
COMPOUND COMMINUTED MANDIBULAR FRACTURES:

PREOP 01/12/2009-

7.5 YEARS

POSTOP 22/07/2017 (ASSAULTED AGAIN TODAY)

PAEDIATRIC MAXILLOFACIAL TRAUMA



AFTER (4 Weeks Later)

Cont

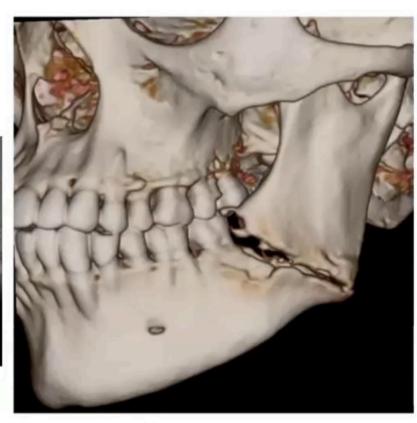
REIMPLANTATION AFTER AVULSION OF A PERMANENT MAXILLARY CENTRAL INCISOR - H.S.

COMPLICATIONS

- ■Malunion / Nonunion
- Facial Deformity ("dish" deformity)
- Diplopia (3.4 –8 %)
- Enophthalmos (3 %) "blow -out"
- Blindness (1.3 –2.1%)
- Superior orbital fissure syndrome (Ophthalmoplegia, upper lids ptosis, proptosis fixed dilated pupil)
- CMJ/TMJ Ankylosis- a serious complication

Prof Guthwig

NONUNION OF AN ANGLE MANDIBULAR FRACTURE



10/03/2021: AFTER ASSAULT 4 MONTHS AGO

NONUNION OF AN ANGLE MANDIBULAR FRACTURE

67

10/03/2021

TRAUMATIC SALIVARY FISTULA-LT MIDFACE SIDE: STI - unrepaired Parotid duct

17-YEAR OLD, M

AT PRESENTATION (26/07/2014)

PUBLICATION: An Anatomic Study of the Facial Nerve Trunk and Branching Pattern in an African Population= FACIAL NERVE INJURY

- Francis Mutahi Thuku, BDS, MDS-OMFS¹ Fawzia Butt, BDS, FDSRCS (ENG)E, FICD, MDS-OMFS²
- SYMON W. GUTHUA, MMEDSc, DOMS, FIAOMS, FCS, FICD1 Mark Chindia, BDS, MSc, FFDRCS1
- Department of Oral and Maxillofacial Surgery, University of Nairobi, Nairobi, Kenya
- ²Department of Human Anatomy, University of Nairobi College of Health Sciences, Nairobi, Kenya.

Craniomaxillofac Trauma Reconstruction Open 2018;2:e31-e37.

COMPLEX MIDFACE INJURIES: MOTORBIKE ACCIDENT-MALUNION

•NYAMEINO, S., BUTT, F, **GUTHUA, SW**, MACIGO, F, AKAMA, M: Occurrence and Pattern of Maxillofacial Injuries caused by Motorcycle crashes presenting at two major Referral Hospitals in Nairobi, Kenya. J <u>Cranio-Maxillofacial Trauma Reconstruction</u>. Open Journal (2018)2: e9 – e14.

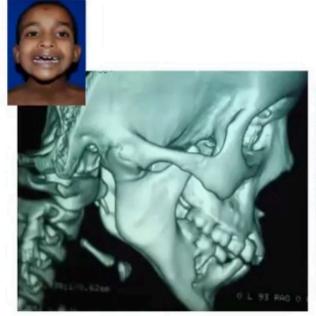
BILATERAL MANDIBULAR CONDYLAR FRACTURES IN A CHILD

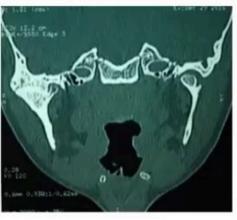
17/05/2017

Factors predisposing to post-traumatic ankylosis.

- Age (10 years and below)
- Prolonged immobilization.
- Meniscal perforation.
- Site and type of fracture.

CRANIO-MANDIBULAR JOINT(CMJ/TMJ) ANKYLOSIS - UNILATERAL -





Lt CMJ Ankylosis following Trauma

BILATERAL CMJ/TMJ ANKYLOSIS

18/01/2017

TMJ/CMJ ANKYLOSIS

PUBLICATIONS AND PRESENTATIONS

- GUTHUA, S.W., MAINA D.M., KAHUGU M., Management of Post-traumatic temporomandibular joint ankylosis in children: Case Report East. Afr. Med. J 1995; 72(7): 471-475.
- BUTT, FM, GUTHUA, S.W. and KEGEREKI, EM: Preliminary outcome of case series of the management of Unilateral and Bilateral Craniomandibular Ankylosis in Kenya: An ongoing prospective study. Open Journal of Stomatology, 2015, 5, 227 – 233 http://www.scirp.org/journal/ojst (http://dx.doi.org/10.4236/ojst.2015.59028)
- AKAMA M.K., GUTHUA, S.W, CHINDIA, M.L, and KAHUHO, S.K.: Management of Bilateral Temporomandibular Joint Ankylosis in children: Case report. <u>East Afr. Med. J. 2009</u>; 86 (1): 45 - 48.
- AKAMA, M. and GUTHUA, S.W.: Challenges and Management of Posttraumatic TMJ Ankylosis in Children and Adolescent. <u>International</u> Association of Oral and maxillofacial Surgery Course Nairobi Kenya. October 2nd 2009.
- AKAMA M., GUTHUA, S.W.: Challenges and outcome of management of post-traumatic TMJ ankylosis in children and Adolescents in Kenya. <u>International Association of Oral and Maxillofacial Surgery course</u>, October 2nd, 2009.
- AKAMA, M and GUTHUA, S.W.: Management of TMJ Ankylosis in children. <u>International AOCMF Symposium on Advances in Maxillofacial</u> Trauma and Reconstruction. Nairobi, Kenya. 30th October, 2015.
- BUTT, F. and GUTHUA SW.: Preliminary Outcome of the Management of Unilateral and Bilateral Craniomandibular Ankylosis. 10th Annual Surgical Symposium. The Nairobi Hospital, September 24th, 2016.