

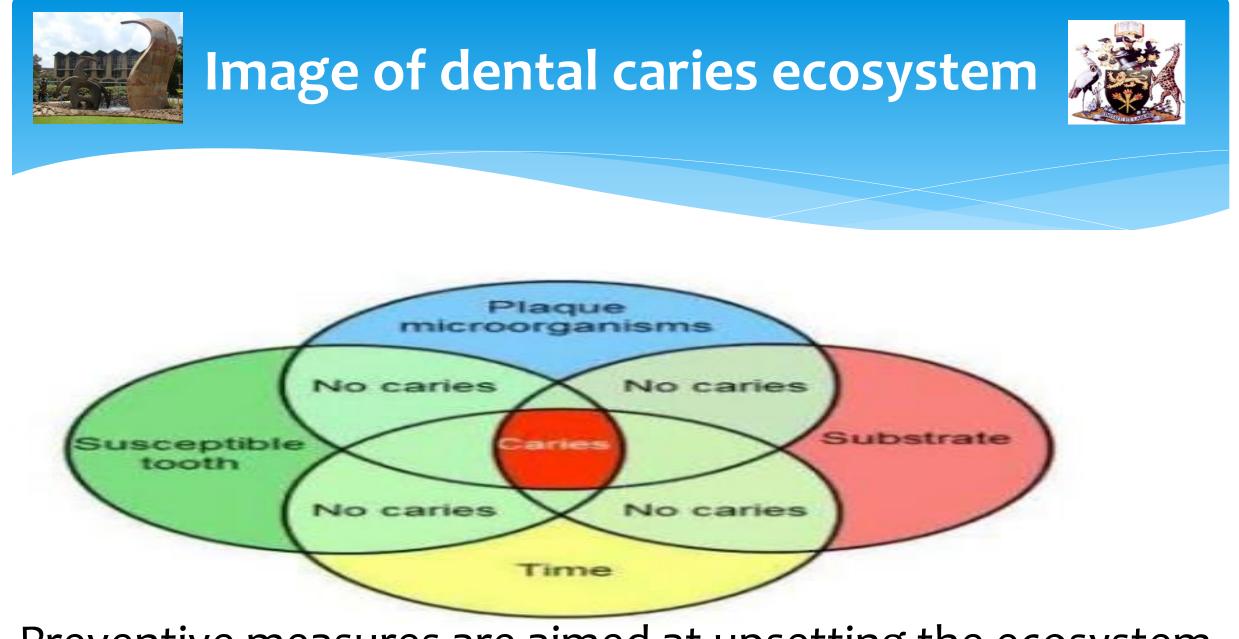
BY: PROF. FRANCIS G. MACIGO

2. OVERVIEW OF CARIES: EPIDEMIOLOGY, CLINICAL PRESENTATION & PREVENTION

- * Epidemiology
- * Clinical presentation
- * Prevention

*Dental caries is a disease of the hard tissues of the teeth characterized by the demineralization of the inorganic component of the tooth followed by the breakdown/ dissolution of the organic component.

It is a dynamic process


- * Demineralization (removal/leaching of caPo4) → remineralization (precipitation of Ca & PO4 ions)
- * Remineralization \rightarrow demineralization
- * Dental caries occurs if there is more demineralization than there is remineralization.
- * Demineralization leads to softening and weakening of the affected tooth surface

- * Dental Caries (DC) is a product of a complex interaction among 4 major factors:
 - 1. Bacterial agents concentrated in plaque
 - 2. Suitable substrate: mainly sucrose
 - 3. Susceptible host/ teeth (enamel etc.)
 - Time factor: there must be continuous demineralization with no time for remineralization
- * 4 factors form an **ecosystem**. All factors must be present for DC to occur.

Preventive measures are aimed at upsetting the ecosystem

Role of the 4 factors

Plaque bacteria.

- * The most important are:
 - * Acidogenic bacteria: produce acid
 - * Aciduric bacteria: can survive at low pH. Most important
 - *Streptococcus mutans
 - *Lactobacilli acidophilus
 - *Actinomyces

Suitable substrate.

*Mainly refined/ fermentable carbohydrates

*Sucrose is the most important substrate for bacterial metabolism resulting in acid production e.g. lactic acid and pyruvic acids

*Sucrose: the arc criminal

Dietary practices that increase the risk of DC

*Diet rich in fermentable CHO

- *Frequency of consumption
- *Timing of intake between meals: favor growth of Lactobacilli

*Bed – time snacks

Susceptible host.

- * Tooth enamel is susceptible to dissolution by acids
- * Characteristics of teeth that increase susceptible to dental caries:
 - * Tooth morphology pits, fissures, grooves not cleansable
 - Tooth composition quantity of minerals. Inorganic matter in relation to organic matter
 - *Increased minerals \rightarrow increased resistance

Time factor

- * There must be sufficient time and repeated attack from bacterial acids with insufficient time for recovery
- * Brushing teeth helps

*Bacteria on tooth surface + sucrose \rightarrow fermentation into acids \rightarrow demineralization (interplaying with remineralization) \rightarrow time factor \rightarrow demineralization supersedes progressive destruction of tooth substance \rightarrow time \rightarrow tooth mortality

Epidemiology

* Indices of measuring DC:

DMF (T) index: measures caries experience in **permanent teeth** i.e. the number of teeth decayed (D), teeth missing due to carries (M) & teeth filled due to caries (F)

*D = 3; M = 1; F = 0: DMF(T) score = 4

* dmf (t) index: measures caries experience in deciduous teeth

DC prevalence and experience in Kenya

*The Kenya National Oral Health Report of 2015 showed the following:

- * The DC prevalence in the ages 5, 12 & 15 yrs. \rightarrow 23.9% {caries experience DMF(T)/ dmf(t) \rightarrow 0.8}
- * DC prevalence in the 5 yrs. Age group only is 46.3% {1.87}
- * DC prevalence in adults: 34.3%

*By international standards, DC experience in Kenya is lower than that in many other countries

*However evidence from various studies shows DC experience in Kenya is increasing.

Sugar consumption and DC in Kenya

- * International Dental Journal 2016 (Macigo F. G., James R. M et. Al.)
- * Findings showed DC in Kenya is increasing due to increasing sugar consumption
- * Per capita sugar consumption increased from 35.5g/d in 1969 to 60.8g/d in 2009. critical sugar consumption is 50g/d according to studies.

- * DC experience in deciduous teeth in 3 5 yrs. Increased from dmf (t) index of 1.5 in 1980s to 2.95 in the early 2000s
- * Caries prevalence increased from 43.2% to 59.5%
- * DC experience for permanent teeth at 12 yrs. of age increased from DMFT of 0.2 to DMFT of 0.92 over the same period.
- * Caries prevalence increased from 11.7% to 44.5% over the same period

- * Age: DC may occur at any age post eruption of deciduous and permanent teeth
 - * Advice mothers to start oral hygiene measures early before the tooth erupts.
 - * Prevalence increases with age due to cumulative effects of the disease

*Sex: many studies have demonstrated that females have a higher DC prevalence than males. Also demonstrated by the 2015 Kenya National Oral Health Survey.

*Why? Early eruption of teeth in girls & dietary habits.

- * Familial/ hereditary factors role of genetic factors.
- Emotional disturbances affecting mental health high caries experience.
- * Ethnicity and race.
- * Culture & religion.
- * Socioeconomic factors.
- * Low level of parental education esp. the mother.

- * Unemployment
- * Low family income
- * Single parent hood
- * Geographic factors
- * Deficient quantities of dietary microelements e.g. fluorides, calcium
- * Systemic illness
- * ISS
- * Diseases, drugs with manifestations of xerostomia

Clinical presentation

- * First clinical sign of the process of DC is a white spot/ white opaque area of the tooth surface (incipient carious lesion → indicative of demineralization)
- * With time, the lesion may become brown, grey or dark in color (uptake of proteins from drinks and feeds eaten)
- * If the lesion progresses, there is breakdown of the tooth surface forming a physical defect leading to formation of a cavity.

Symptoms

- Mild to severe sensitivity due to thermal, chemical changes or tactile touch
- * Mild to severe pain esp. at night (may be due to changes in temp. or pressure)
- * Discoloration on the tooth surfaces
- * Cavities on tooth surfaces
- * Food sticking between teeth proximal cavities
- Resulting complications such as bleeding or swelling of gums, mandible, maxilla

* In children

- * Anxiety, fear
- * Refusal to feed
- * Loss of sleep
- * Uncooperative behavior
- * Loss of attention

* Visual inspection (tooth must be clean & dry) look for:

- * White opaque spots, brown, grey discolored areas
- * Physical defects
- * Discontinuity of tooth surface (breaching of enamel)
- * Frank cavities with or without discoloration
- * Food impaction between tooth

* Use of diagnostic tools

- * Dental mirror & sickle shaped probe: The probe usually catches on a softened floor of a cavity (resists withdrawal)
- * Bitewing radiographs: DC appears as radiolucent lesions on one or several surfaces of a tooth. This is good for detecting cavities on proximal surfaces (between teeth) that are difficult to see
- * Exploration/ trial cavity: where clinical and radiographic examination fail to detect a cavity but symptoms persist.

*May lead to complications that are life threatening:

*Cellulitis e.g. Ludwig's angina

*Death through e.g. airway obstruction, septicemia

Management

- Incipient carious lesion with no cavitation: fluoride application to reverse the lesion
- * Removal of carious lesion and filling (radio opaque on imaging) to:
 - * Repair the damage
 - * Restore physical appearance/ aesthetic
 - * Restore function
- * Root canal therapy and filling where there is pulpal involvement.

- * Surgical intervention where there is associated pathological lesion e.g. periapical abscess with bone loss
- * Crowning of decayed tooth: artificial crown fabrication and fixation where there is marked destruction of the natural crown
- Tooth extraction: when other methods of treatment are not possible, not accessible, not affordable, not available or on patient demand (last resort); it is becoming less common due to increased patient awareness on restorative tooth treatment modalities.

Prevention of DC

*Basis of prevention: etiological model well established

Methods of prevention: communities based methods

1. Use of fluorides; the most effective means of DC prevention in community based programmes.

- * Mechanism of fluoride action:
 - Reduction in susceptibility of tooth enamel to dissolution by acids
 - * Interference with plaque bacterial metabolism and growth
 - * Enhancement of remineralization: repair of early carious lesions

* Methods of fluoride use

- * Fluoridation of public, school water supplies
- * Fluoridation od salt
- ★ Fluoridation of milk U.K, chile, china, Russia → school milk programs for ages up to 6 yrs.

- * Limitations in Kenya
 - * Variation in distribution of fluorides
 - Requires piped eater supplies. Majority have no piped water in rural areas
 - * Lack of adequate data on dietary sources of fluorides
 - * Lack of official policy
 - * Logistics and variation in consumption patterns e.g. in milk

2. Promotion of health diet/ control of cariogenic diet

- * Food modification: substituting sucrose with non cariogenic sugar sweeteners e/g/ xylitol, sorbitol
- * Legislation & regulation: aim. Control of production, labelling, advertising, marketing. Influence consumption patterns.

3. Public health education: aim \rightarrow inculcate better dietary habits

4. Bans/ restrictions: sale of cariogenic foods to vulnerable groups – school children

Limitations of control of cariogenic diet

* National economic considerations

* Monetary interests of powerful groups of manufacturers
* Biological needs

Individual based methods

* Use of fluorides

- * Supervised fluoride use in children
- * Fluoride tablets
- * Individual self care
 - * Fluoride tooth pastes in oral hygiene
 - * Fluoride mouth rinses 7 years or more
 - * Dietary control

Every time you smile at someone, it is an action of love, a gift to that person, a beautiful thing. ③. - Mother Teresa