Viral Carcinogenesis – Molecular Basis of Cancer (MBChB III - 21May2019)

Dufton Mwaengo, PhD Dept Medical Microbiology University of Nairobi

Major Types of Cancer

Carcinoma

- Origins: skin, lungs, breasts, pancreas, other organs/glands

Sarcoma

- Arise in bone, muscle, fat, or cartilage
- Rare

Lymphoma

- Cancer of lymphoctyes

Leukemia

- Cancer of the blood

Definitions

- Primary cancers
 - Cancers originating from any organ/tissue
 - Spread -> metastatic
- Most cancers form tumors, but not all tumors are cancerous.
- Tumor
 - Mass/cluster of abnormal cells
 - Benign (non cancerous) tumors
 - Stop growing (hence no new tumors)
 - Malignant (cancerous) tumors
 - Tumors crowd out healthy cells (interfere with body functions)
 - Draw nutrients from body tissues

 All cancer cells have one thing in common: A loss of cell cycle control

Cell cycle

The Cell Cycle

Cell with duplicated chromosomes

- M- mitosis
- G1 cells grow
- S DNA synthesis
- G2 growth and preparation for mitosis
- G1/S decision point for going to dividing state

Loss of Cell Cycle Regulation

- A. The Cell Cycle Control system:
 <u>Checkpoints</u> during G1, G2, and M phases
- B. Checkpoint signals: report cells status
 - a. Is the cell big enough?
 - b. Is environment favorable?
 - c. Is DNA damaged?
 - d. Is DNA replicated?
 - e. Are chromosomes attached to opposite poles?

Cell cycle and cancer

Cancer and Genes

<u>Two types of genes control cell cycling/division</u>

- 1. <u>Proto-oncogenes</u> (cellular)
 - c-onc (e.g. c-myc)
 - Promote cell proliferation/division only at appropriate times
 - <u>Oncogenes</u> cancer-causing genes (v-onc)
 - Promote cell division continuously
- 2. Tumor suppressor genes (anti-oncogenes)

- Repress cell division.

1. PROTO-ONCOGENES

Examples of proto-oncogene (c-onc) proteins

Class I: Growth Factors

Class II: Receptors for Growth Factors and Hormones

Class III: Intracellular Signal Transducers

Class IV: Nuclear Transcription Factors

Class V: Cell-Cycle Control Proteins

Mechanisms of oncogene Activation

- 1. Obtaining a strong promoter or enhancer
- 2. Group translocation or chromosome rearrangements
- 3. Proto-oncogene amplification
- 4. Gene mutation

Mutations that cause cancer

1. Increased activity of a gene whose protein causes cells to divide

2. Decreased activity of a gene whose protein blocks cell division

Genetic mutation (c-onc)

2. TUMOR SUPPRESSOR GENES (ANTI-ONCOGENES)

Tumor suppressor gene (anti-oncogene)

- Protein product -> inhibits cell division (hence prevents uncontrolled cell growth).
- 2. Induced occurrence of tumors when gene
 - a. Deleted
 - b. Mutated
- 3. Examples
 - a. Rb gene
 - b. P53 gene.

Tumour suppressor genes

Act as a brake for cell division

"Guardian of the genome"

PROBLEM:

Mutation in tumour suppressor genes = brakes don't work, or there is an accumulations of mutations (DNA repair enzymes)

Retinoblastoma (Rb gene)

- Diagnosis: "Cat's eye" reflection in affected eye.
- Common cancer of infants and children
- Individuals at greater risk of developing other cancers.

Tumor suppressor Rb

 Rb binds to transcription factor
 E2F and prevents gene expression of proteins needed to go to S phase

Mechanism of action of Rb gene

Rb gene

- Rb protein controls cell cycle moving past G1 checkpoint
- Rb protein binds regulatory transcription factor E2F
- E2F required for synthesis of replication enzymes
- E2F Rb bound = no transcription/replication

--> uncontrolled cell proliferation --> cancer

Tumor suppressor p53

- P53 halts progression when DNA damaged
 - to give cell time to repair or
 - triggers apoptosis
 of damaged cell
- If damaged (mutated) cell moves to S phase then it may replicate

p53

- Encodes protein of molecular wt 53KD
- The "Last Gatekeeper" gene
 - Malignant state not attained despite other cancercausing mutations
 - Malignancy requires p53 mutations (general observation)

p53

If DNA damaged

- Cell cycle arrested to allow DNA to be repaired
- If damage cannot be repaired
 --> cell death (apoptosis)
- Disruption/deletion of *p53* gene
- Inactivation of p53 protein
- --> uncorrected DNA damage

--> uncontrolled cell proliferation --> cancer

Biological functions of p53

- Suppressing cell cycle
- Suppressing transformation functions of some oncogenes
- Monitoring cell DNA damage
- Inducing the cell apoptosis

Human cancers involving p53

- Cervix
- Breast
- Bladder
- Prostate

- Liver
- Lung
- Skin
- Colon

A simplified hypothesis for the development of cancer

VIRAL ONCOGENESIS

Oncogenic viruses may be RNA or DNA

- 20% of human cancers believed to be of viral origin
- These include:
 - Cervical cancer
 - Burkitt's lymphoma
 - Hepatocarcinoma
 - Kaposi's sarcoma
- Virus is not only factor

Viruses Associated With Human Cancers

Family	Virus	Cancer	
Papillomaviri dae	Human papillomaviruses	Genital tumors Squamous cell carcinomas Oropharyngeal carcinomas	
Herpesviridae	Epstein-Barr virus	Nasopharyngeal carcinoma African Burkitt's lymphoma B cell lymphoma	
Hepadnavirid ae	Hepatitis B virus	Hepatocellular carcinoma	
Human T lymphotrophic virusesRetroviridaeHuman immunodeficiencyviruses		Adult T cell leukemias AIDS-associated tumors (due to impaired T cell responses	
Flaviviridae	Hepatitis C virus	Hepatocellular carcinoma	

DNA-viral oncogenes

DNA Virus- derived oncogenes:

• Adenovirus:

E1A	pRB	
E1B	p19	Apoptosis (anti)
p55	p53	

- Polyoma virus (SV40):
 T antigen pRB / p53
- Papilloma virus:

E6	p53	
E7	pRB	(approx 75 HPVs)

CERVICAL CANCER

Cervical Cancer

Cervical Cancer

Cancer of the narrowed entry to the uterus (cervix)

Categorized into stages 0 through IV.

- a. Stage 0
 - Limited to cells on surface layer
 - Carcinoma in situ, or pre-invasive cancer

a. Stage IV

- Spread beyond pelvis - involves the bladder, rectum, or distant organs (liver, lung, or bone).

Staging of Cervical Cancer

Human Papilloma virus and cancer

HPV E7 sequences differ in low and high risk strains

Amino acid sequences in HPV E7 protein affects binding affinity to Rb.

- 1. High risk strains of HPV interact strongly with Rb.
- 2. Low risk HPVs have low affinity for Rb

Hepatitis C virus & HPV E6 Antigen

p53

Cervical Cancer

- 1. Associated with sexually transmitted HPV
- 2. Types of HPV:
 - -High-risk -> e.g. HPV16 & HPV18
 - Low risk

Risk factors

- Multiple partners (promiscuous)
- Presence of genital HPV infections
- Presence of other STDs (e.g. Chlamydia, HIV)
- Prolonged use of oral contraceptives (>5 yrs) increased risk
- Smoking etc

LIVER CANCER

HBV & Liver Cancer

HBV

-95% acute infections (liver inflammation, jaundice, liver failure) -> autoimmune

- 5% chronic -> HCC

 Integrated viral DNA common

Liver cancer

 Hepatitis B virus remains dormant with no overt symptoms for many years in
 70-80 per cent people, who contract it in childhood

Symptoms like jaundice, water in abdomen, blood vomitting appear in late stage when the liver fails

 Carrier rate can be brought down by effective vaccination and screening of pregnant women

It's closer than you think -World Hepatitis Day theme this year

Viral Inactivation of p53 Function

How should these proteins be similar?

BURKITT'S LYMPHOMA (BL)

Burkitt's Lymphoma (BL)

Causative agent = EBV Two cancers 1. BL 2. Nasopharyngeal Carcinoma

- EBV no viral oncogenes
- Cellular gene (c-myc) translocation
 - chromosome 8->14

DNA Tumor Viruses e.g. Herpesviruses can cause chromosomal breaks

Genes can be assigned to sites on specific chromosomes

mos and myc : chromosome 8

fes: chromosome 15

Cancers often result from gene translocations

Oncogenesis by rearrangement

<u>Tumor</u>	<u>c-onc</u>	<u>new p</u>	promotor
Burkitt's lymphoma	тус	(8)	lg heavy (8 to 14)
B-cell chronic lymphocytic	bcl-1		lg heavy (11 to 14)
leukemia	bcl-2		lg heavy (18 to 14)

KAPOSI'S SARCOMA (KS)

Kaposi's Sarcoma (KS)

Lesions can occur in several parts of the body

- KSHV associated (not proven) with KS
- Herpesviridae family (gamma subfamily)
- KS common in context of HIV/AIDS

Kaposi's Sarcoma (KS)

- 1. Associated with HHV-8
 - Virus: Kaposi's Sarcoma-Associated Herpesvirus (KSHV)
 - Preferentially infects a type of endothelial cells (spindle cells) from which KS develops
- 2. Inflamed, angioproliferative lesions
- 3. Can spread both locally & systemically

RETROVIRUSES

Retroviruses

- Epidemiology
 - Typical infectious viruses (exogenous)
 - Sexual transmission
 - IV drug abusers
 - Other, unknown transmission mechanisms
- Classification
 - Leukemia viruses
 - Alpharetrovirus
 - Gammaretrovirus
 - Nontransforming retroviruses
 - Deltaretrovirus
 - Lentivirus

Adult T-cell leukaemia/lymphoma (ATLL)

- 1. Caused by HTLV-1
- 2. Patients frequently have skin or pulmonary lesions

Human T-cell Lymphotropic Virus (HTLV)

- Discovery from a Afro American with a T-cell lymphoma infiltrating his skin
- 2. HTLV-1 (1980)
- 3. Related virus HTLV-II discovered in 1982
- 4. Tax (viral oncogene) a transcriptional activator
- 5. Tax protein known to immortalize cells

Retroviruses

(B)

- tax gene encodes Tax protein
- Tax is a transcription factor
- Promotes cell division

Mechanisms of Retroviral Carcinogenesis

- Infection -> uncoating (cytoplasm)
- Reverse transcriptase makes a dsDNA copy
- dsDNA integration (provirus)
- Tax (e.g. HTLV-1)
 - Viral oncogene (v-onc)
 - Transcription factor (Tax) combines with cellular activating transcription factor-4 (ATF4)
 - The dimer binds to HTLV proviral and cellular promoters to drive cell division
 - Eventually: Leukemia (blood cancer)

RNA Tumor Viruses

Retroviruses - Two types

- 1. Acutely transforming (rapid onset of neoplasia)
 - have an extra gene e.g. RSV

Some retroviruses have an extra gene

Normal gene Cell-oncogene (c-onc)

Replication-defective virus

Acutely transforming retroviruses

Comparison of oncogenic and non-oncogenic retroviruses

Fields Virology 4th edition, 2002, Chapter 10, Lippincott, Williams and Wilkins, 2002 Fig. 10-2

Figure 10-2 Genomic structure of avian leukosis virus (ALV) and two transducing retroviruses. In addition to the long terminal repeat (LTR) sequences that provide transcriptional regulatory elements, the normal genome of ALV contains three major coding regions including gag, pol, and env. Gag encodes structural proteins of the virus, pol encodes enzymes involved in reverse transcription and integration, and env encodes the virion surface glycoproteins. In Rous sarcoma virus, the cellular src sequences are added to an otherwise intact retroviral genome. In contrast, in the MC29 virus, the addition of myc sequence is at the expense of the entire pol gene and parts of both gag and env.

Examples of some viral oncogenes (v-onc)

Virus	Oncogene		
Rous sarcoma virus	V-SrC		
Simian sarcoma virus	v-sis		
Avian erythroblastosis virus	v-erbA or v-erbB		
Kirsten murine sarcoma virus	v-kras		
Moloney murine sarcoma virus	v-mos		
MC29 avian myelocytoma virus	v-myc		

RNA Tumor Viruses

- 2. Chronically transforming retroviruses
 - e.g. Avian leukemia virus (ALV)
 - No viral oncogene

Avian Leukosis Virus (causes lymphomas)

R U5 GAG POL ENV U3 R

No oncogene! – How does it cause a tumor?

Insertional Mutagenesis

Insertional mutagenesis

ONCOGENESIS BY PROMOTOR INSERTION