URINARY TRACT INFECTIONS

INTRODUCTION

- UTIs are common, especially among women.
- Incidence of UTI increases in old age.
- UTIs infection usually occur by ascending route (urethra to bladder), less common by hematogenous spread
- UTIs occur in two general settings: communityacquired and hospital (nosocomially) acquired

Uncomplicated urinary tract infection:
 Infection in a structurally and neurologically normal urinary tract

 Complicated urinary tract infection: Infection in a urinary tract with functional or structural abnormalities

Common Risk Factors for UTI: Women

- Urinary tract obstruction (including calculi)
- Catheterization
- Pregnancy
- Urologic instrumentation or surgery
- Diabetes mellitus
- Aged/Postmenopausal

Common Risk Factors for UTI: Men

- Urinary tract obstruction (including calculi)
- Catheterization
- Prostatic enlargement
- Urologic instrumentation or surgery
- Diabetes mellitus
- Lack of circumcision (children and young adults)

- For complicated UTIs, the order of prevalence for causative agents:
 - UPEC
 - Enterococcus spp.
 - K. pneumoniae
 - Candida spp.
 - S. aureus
 - P. mirabilis
 - P. aeruginosa
 - GBS

- For the agents involved in uncomplicated UTIs
 - UPEC
 - Klebsiella pneumoniae
 - Staphylococcus saprophyticus
 - Enterococcus faecalis
 - GBS
 - Proteus mirabilis
 - Pseudomonas aeruginosas
 - Staphylococcus aureus
 - Candida spp

- Uncomplicated urinary tract infections (UTIs) begin when
- uropathogens that reside in the gut contaminate the periurethral area colonize the urethra
- Migration to the bladder and expression of pili and adhesins results in colonization and invasion
- Host inflammatory responses: neutrophil infiltration and evasion of evade the immune system
- 4. Bacteria undergo multiplication and biofilm formation
- These bacteria produce toxins and proteases that induce host cell damage
- Release of essential nutrients that promote bacterial survival and ascension to the kidneys
- Kidney colonization results in bacterial toxin production and host tissue damage
- 8. If left untreated, UTIs can ultimately progress to bacteraemia if the pathogen crosses the tubular epithelial barrier in the kidneys

- Uropathogens that cause complicated UTIs follow the same initial steps as those described for uncomplicated infections (steps 1 and 2)
- However the bladder must be compromisedcatheterization
 - fibrinogen accumulates on the catheter-attachment
 - Infection induces neutrophil infiltration
 - bacteria multiply
 - form biofilms
 - promote epithelial damage and can seed infection of the kidneys
 - toxin production induces tissue damage
 - If left untreated-bacteraemia

Asymptomatic bacteriuria:

- Significant bacteriuria without clinical symptoms or other abnormal findings.
- Up to 40% of elderly men and women have asymptomatic bacteriuria
- Screening for asymptomatic bacteriuria can be done in some individuals/patients

- Screening for asymptomatic bacteriuria in adults has little value except for two situations:
 - pregnancy (because of the high risk of acute pyelonephritis with its accompanying risk of fetal complications)
 - prior to urologic surgery (because of the risk of postoperative sepsis).

LABORATORY DIAGNOSIS OF UTIS

Sample collection

- sterile, dry, wide-necked, leakproof container, well labelled
- 10–20 ml specimen
- "mid stream" urine sample

Macroscopic examination

Describe the appearance of the specimen

- Colour of specimen.
- Whether it is clear or cloudy (turbid)

Direct microscopy

wet prep is examined to detect:

- Wet film to detect :
 - . Pus cells, red cells, yeasts, casts
 - . Bacteria, T.vaginalis, S. haematobium
- Significant pyuria, i.e. WBCs in excess of 10cells/µl (10⁶/L) of urine

Urine biochemistry

Biochemical tests which are helpful in investigating UTI include:

- Protein-indicative of bacterial UTI
- Nitrite-E. coli, Proteus species, and Klebsiella species, (able to reduce nitrates)-Greiss test or a nitrite reagent strip test
- Leukocyte esterase-indirect test for pus cells

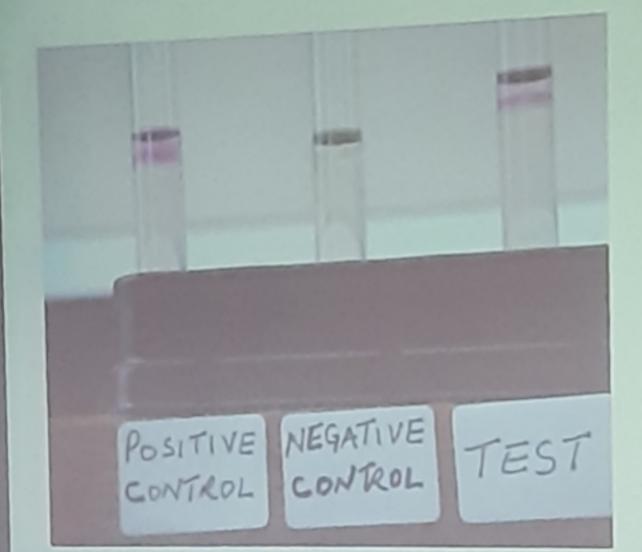
Urine culture

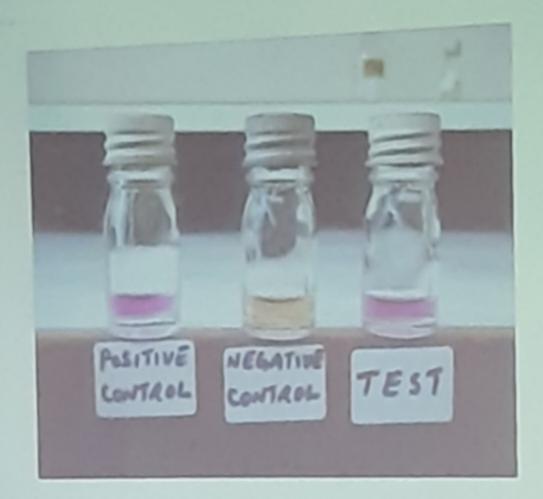
Not necessary when microscopically and biochemically normal, except when screening for asymptomatic bacteriuria in pregnancy.

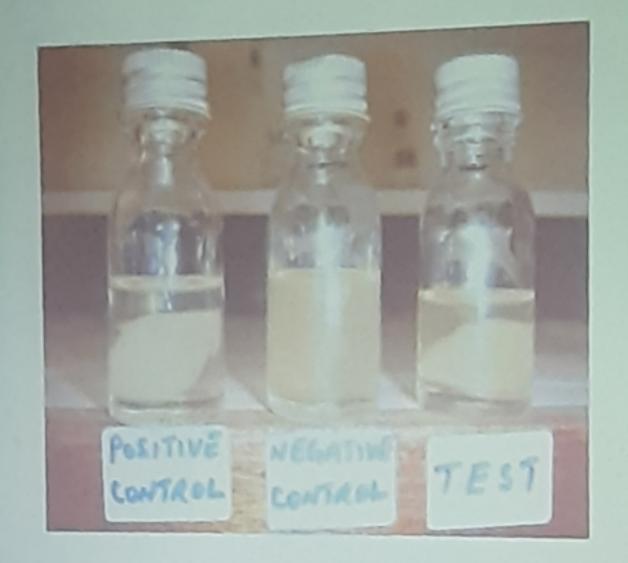
Viable bacterial count:

- A measured volume (calibrated loop 0.002 ml)
 of urine is spread on surface of a solid medium
- Incubation of the solid medium at 37°C for 18-24 hours
- Enumerate the number of colonies Culture on CLED

Appearance of some urinary pathogens on CLED agar


- E. coli: Yellow (lactose-fermenting) opaque colonies often with slightly deeper coloured centre.
- Klebsiella species: Large mucoid yellow or yellow-white colonies.
- Proteus species: Transluscent blue-grey colonies.
- P. aeruginosa: Green colonies with rough periphery (characteristic colour).
- E. faecalis: Small yellow colonies.
- S. aureus: Deep yellow colonies of uniform colour.
- S. saprophyticus and other coagulase negative staphylococci Yellow to white colonies.


Identification tests


- Catalase test for gram + orgs
 - Positive for staphylococcus
 - Negative for streptococcus
- Tripple iron sugar for gram negative rods
 Yellow/yellow(Lactose fermenters)
 - Follow up with IMVC

Antimicrobial susceptibility testing

- Perform susceptibility testing on urines with significant bacteriuria, particularly from patients with a history of recurring UTI.
- Cultures from patients with a primary uncomplicated UTI may not require a susceptibility test.

Treatment in UTIs

BASED ON ISOLATE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OBTAINED.