	MICROBIO SPRING 200	LOGY 205 Nat 03, EXAM 1.	me:		
1. In the Gram stainin	ng, after decolorizing wi	th alcohol the Gram (-)	cells stain	, while Gram (+)	
a. blue:red	b. red:blue	c. colorless:blue	d. blue:colorle	ess	
2. In the Acid-Fast st cells stain	aining after adding the c	counter staining acid fas	t (-) cells stain	while acid fast (+)	
a. blue:red	b. red:blue	c. colorless:blue	d. blue:colorle	ess	
3. Place the following1) light source	g parts of the light micro 2) objective lens	oscope in order as they v 3) Condenser	would appear from 4) stage	the observer's eyes: 5) diaphragm/iris	
a) 2,3,4,5,1	b) 2,4,3,5,1	c) 4,2,3,5,1	d) 4,3,2,5,1	e) None is correct	
4 When a microorga	nism is placed in $a(n)$	solution wa	ter will enter the co	ell and cause it to swell	
a. hypotonic	b. isotonic	c. hypertonic	d. protoplasm	ic e. autolysin	
 5. Lipopolysaccharide is typically found in: a. cell walls of Gram negative bacteria. c. outer membranes of Gram negative bacteria. e. the coat of bacterial endospores b. cell walls of Gram positive bacteria. d. outer membranes of Gram positive bacteria. 					
 Most bacteria belo a. bacteria 	ng to the Kingdom: b. protista c. n	nonera d. Invert	ebrata e)	None of the above	
 Variolation was an A. syphilis D. plague 	early attempt to control B. typhoid E. smallpox	l: C. (cholera		
 8. The germ theory of disease states that: A. one infectious agent causes one disease B. microorganisms can invade macro-organisms and cause disease C. cells are the fundamental units of life D. macro-organisms can invade microorganisms and cause disease E. inadequate washing can cause disease to be transmitted from one individual to a new individual 					
 Koch's postulates a A. demonstrate spo C. demonstrate ster E. demonstrate a cause 	rre used to: ntaneous generation ility se-effect relationship ber	B. demonstrate that D. demonstrate the tween an infectious age	viruses are filterat use of solid media nt and a disease	ble agents to obtain pure cultures	
10. Which one of the A. 0.001 meter D. 0.001centimeter	following is equal to on B. 0.01 nanc E. 0.001mill	e micrometer? ometer C. imeter	0.001 nanometer		
 Which of the following of t	owing procedures repres en iodine, then alcohol, en alcohol, then iodine, en alcohol, then safranin en iodine, then safranin	sents the correct order o then safranin then safranin n, then iodine then alcohol	f reagents for the C	Gram stain?	

E. crystal violet, then iodine, then safranin, then alcohol E. crystal violet, then safranin, then alcohol, then iodine

12) A bacterial cell is found to be motile does this cell probably have?a) flagella, plasmid, pilid) endospore, flagella, cytoplasmic inc	e and resistant to high temperatur b) endospore, flagella, capsule clusions e) endospore, p	res and phagocytosis. What structures c) flagella, pili, capsule ili, capsule			
13. Most biological oxidationsa) involve the loss of hydrogen atoms.d) occur without simultaneous reduction	b) involve the gain of e on. e) occur sponta	lectrons. c) require ATP. neously			
14. What stage of carbohydrate metabolica) glycolysisd) Krebs cycle	ism is responsible for the produc b) pentose phosphate pathway e) fermentation	tion of the most amount of ATP? c) electron transport			
15. All of the following are true of fermeda small amount of ATP is producedd) energy is released from sugars.	entation except . b) the Krebs cycle is no e) the final electron acc	t involved. c) oxygen is not required. eptor is an inorganic molecule.			
16. An eukaryotic cell with a diploid nu	mber of 6 chromosomes undergo	bes mitosis. The number of			
chromosomes in each of the daughter a. 24 b. 6	cells is c. 12	d. 18			
17. Which of the following requires carrier proteins, but does not require energy?a) active transport b) facilitated diffusion c) group translocationd) passive diffusion					
18. The following are associated with osa) Concentration gradientd) All three are correct	e) Water e) Only two are correct	c) Selective membrane			
19. A bacterial arrangement as "a bunch a. diplococcus b. tetrads	of grapes" is described as a: c. streptococcus	e. staphylococcus			
20. Fimbriae in bacteria:a) are found in all bacterial cellsd) allow adherence to surfaces	b) allow bacterial conjugatione) form the cell's glycocalyx	c) allow cell motility			
21. Bacterial endospores function in: a. reproduction b. survival	c. protein synthesis	d. storage			
22. The arrangement of flagella on the constraints of the proteus spp. has flagella at both ends of a) lopothrichous flagellation amphitrichous flagellation	ell surface can help in the identif of the cell surface that is referred b) monotrichous flagellation e) a hairy dude	fication of an organism. For example, l as: c) peritrichous flagellation d)			
 23. Arrange the following terms in the o external environment of a Gram negat 1. periplasmic space 2. pepti 4. lipopolysaccharide 5. cytop 	rder they would be found if you ive cell: doglycan blasmic membrane	traveled FROM the cytoplasm THE 3. capsule			
a. 5,1,2,4,3 b. 3,1,2,4,5;	c. 5,2,1,4,3	d. 5,1,2,3,4			
24. The magnification when using a 40X a) 4 times b) 40 times	C objective lense is: c) 400 times	d) unable to calculate			

Matching: Choices can only be used ONCE.

25. Proved the a 26. Implemente 27. Vaccinated	a) Louis Pasteurb) Edward Jennerc) Robert Kochd) R. Virchowe) I. Semmelweis				
28. The resolving pov a. 2 mm	wer (limit of resolu b. 2 μm	tion) of the light microsc c. 0.2 mm	cope is: d. 0.2 μm	e. 0.02 mm	
29. Organisms such of energy, are ref A. light, autotrop D. organic chemi	as <i>E. coli</i> or <i>Salmo</i> erred to as hs cals, autotrophs	<i>nella typhimurium</i> , which B. organic chemicals, h E. CO ₂ , autotrophs	h typically utilize eterotrophs C.	as a source O ₂ , aerobes	
30. If the size of bacterium the instructors gives you is 10 μm. What would be its size in mm?a) 10 mmb) 100 mmc) 0.01 mmd) 0.001 mme) None					
31. Mention a genus a. <i>Mycobacterium</i>	of bacteria capable b. <i>Clos</i>	of producing spores: tridium	c. Mycoplasma	d. Streptococcus	
32. Calculate the resolving power of the following objective lens with a numerical aperture of 0.65. Use the following formula: $RP = \lambda/2(NA)$					
a) 38 µm	b) 384 µm	c) 0.38 µm	d) 0.038 µm		
33. Gram positive bacterial cell walls contain all of the following except?a. N-acetylglucosamineb. cell membranec. lipopolysaccharidesd. techoic acide. periplasmic space					
 34. What is the fate of pyruvic acidin an organism that uses aerobic respiration? a) It is reduced to lactic acid b) It is oxidized in the Krebs cycle c) It is catabolized in glycolysis d) It is oxidized in the electron transport chain e) It is reduced in the Krebs cycle 					
 35. A strict fermentative baceteria produces energy: a) by aerobic respiration only b) by glycolysis only c) by fermentation or aerobic respiration d) only in the absence of oxygen e) only in the presence of oxygen 					
36. As the magnificat a. increases	tion of a series of c b. decreases	bjective lenses DECREA c. stays the sam	ASES, the working dis te d. ca	tance nnot be predicted	
37. Immersion oil is aa. Increases magnifd. it is fashionable	used with some mi ication	croscope lenses because b. prevents light scatter e) the TA likes it	ing c. it	has better resolution	
38. Techoic acid is most likely to be located in which part of a bacterial cell?a. capsuleb. sporec. flagellumd. cell walle. cytoplasmic membrane					
39. When there are m inside the bacterial a. isotonic	ore dissolved solid cell, the bacteria c b. hypertonic	ds (higher concentration) ell is considered c. hypotonic	in the surrounding me in relation to the d. plasmolys	edium than there are surrounding medium. is e. lysis	

40. Penicillin can destroy the o What would be the name given a) Spheroplast	cell wall but organisms can yen to a Gram (-) cell obta b) Protoplast	n continue to live if placed ined after being incubated c) Mycoplast	d in isotonic environments. l with penicillin: d) None
41. From the above question, va) cell membrane+ peptidogc) cell membrane+ peptidog	what cell structures would lycan lycan + outer membrane	be left after the treatment b) cell membran d) peptidoglycar	:: e+ outer membrane n + outer membrane
42. Penicillin and lysozyme ara) both are enzymesd) both are brand names of t	e similar in that b) both are anti he same compound	biotics c) both a e) both affect the cell me	affect cell walls embrane
43. If a student accidentally in nutrient broth, which of the a. the solution has a lower so b. water will leave the cell c. the solution has a higher w d. water will enter the cell e. the cells will burst	oculates a bacterial culture following describes the in- blute concentration compa- vater concentration compa-	e into a hypertonic solutio oculated culture red to the cells ared to the cells	n instead of balanced
44. The most distinctive differa) The Gram (+) cell wall isc) The Gram (-) cell wall ha	ence(s) between Gram (-) thinner s an outer membrane	and Gram (+) is/are: b) The Gram (+) cell wa d) Two are correct	ll is more complex e) Only one is correct
45. For each [NADH ⁺] entering a. 2 b. 3	ng the electron transport c c. 4 d. 5	chain, the number of ATP e. 6	molecules produced is:
46. In the Krebs Cycle:a. A large number of reducedb. Pyruvate is broken down toc. Glucose is broken down tod. Oxidative phosphorylation	intermediate electron carr lactic acid, yielding NAI pyruvate, yielding ATP ar occurs	iers, FADH ₂ and NADH+ DH+ nd NADH+ e) Net ATP prod	-, are produced luction is zero
47. In glycolysis:a. Many intermediate electronb. Pyruvate is broken down toc. Glucose is broken down tod. Oxidative phosphorylation	carriers, FADH ₂ and NA lactate, yielding NADH+ pyruvate, yielding ATP ar occurs	DH+, are produced - nd NADH+ e) Net ATP prod	luction is zero
48. In the electron transport cha. A large number of reducedb. Pyruvate is broken down toc. Glucose is broken down tod. Oxidative phosphorylation	ain: intermediate electron carr lactic acid, yielding NAI pyruvate, yielding ATP ar occurs	iers, FADH ₂ and NADH+ DH+ nd NADH+ e) Net ATP prod	-, are produced luction is zero
49. Substrate-level physphorya. Electron transport chaind. Glycolysis & Krebs cycle	ation occurs in: b. Glycolysis e. Krebs cycle,	c. Krebs glycolysis, & electron tra	cycle nsport chain
50. Which of the following is A. chloroplasts site of ph C. microtubules part of th E. endoplasmic reticulum	mismatched? otosynthesis ne cytoskeleton - synthesis and transport o	B. Golgi complex cer D. mitochondria site of f proteins	ntromeres and basal bodies of energy generation