

Ionizing radiation hazard symbol

2007 ISO radioactivity danger logo. 🗗

RADIATION INJURY - The Effect of Ionizing Radiation

Dr Edwin Walong, MBChB, MMed (Path), FCPath ECSA. Anatomic Pathology Unit, Department of Human Pathology, University of Nairobi

8/06/2015

Clinical applications of Radiation

- Diagnostic radiology
- Radiotherapy: Malignant neoplasms
- Radiation therapy for other diseases: Radioactive Iodine, radiation for keloids/hypertrophic scars

Scope

 The nature and effects of 'ionizing radiation' and 'non ionizing radiation' in cells, tissue and the individual

Objectives

- To understand the physical nature of radiation
- To understand the cellular changes induced by radiation
- To discuss tissue and organ changes due to ionizing radiation in humans
- To discuss the sequelae of total body irradiation

Radiation

- Energy bearing particles or waves travel through
 - a vacuum
- Includes travel through matter containing media
- This media is not required for their propagation.

Radiation-Ionizing or Non Ionizing

- Ionizing
- Non ionizing

Ionizing radiation

Quantity	Particle detector	CGS units	SI units	Other units
Disintegration rate		curie	becquerel	
Particle flux	geiger counter, proportional counter, scintillator			counts per minute, particles per cm ² per sec
Energy Fluence	thermoluminescent dosimeter, Film badge dosimeter		joule metre ²	
Beam energy	proportional counter	electronvolt	joule	
Linear energy transfer	derived quantity	MeV cm		keV µm
Kerma	ionization chamber, semiconductor detector, quartz fiber dosimeter, Kearny Fallout	esu cm ³	<u>coulomb</u> kilogram	roentgen
Absorbed	calorimeter	rad	grav	ren
dose			5	icp
Equivalent dose	derived quantity	rem	sievert	
Effective dose	derived quantity	rem	sievert	BRET
Committed dose	derived quantity	rem	sievert <u>11</u>	banana equivalent dose

	Quantity P Disintegration rate		article detector	CGS units		SI units		Other units	
				curie		becquerel			
	Particle flux	ge pr cc	eiger counter, oportional ounter, scintillator				co pe mi pa pe	counts per minute, particles per cm ² per sec	
Absorbed dose			calorimeter		rad			gray	
Equivalent dose			derived quantity		rem			sievert	
Effective dose		e	derived quantity		rem			sievert	
Committed dose			derived quantity		rem			sievert	
dose derived quantity		rem		siev <u>4</u> 2t	equivalent dose				

Units of Dose

- Gray (Gy) The Unit of ionizing energy absorbed (absorbed dose). I Gy = 1 J/Kg
- Sievert (Sv) The Unit of absorbed dose taking account of Linear Energy Transfer (LET).
- For α particles- 1Sv = Gy x20, β particles: 1Sv
 = Gy x1, γ

Effects of Ionizing Radiation

- Target Theory injury results to ionization of specific cellular components.
- Targets include nucleic acids, enzymes and proteins that bear the SH group
- Poison Theory injury results from ionization and production of free radicals. This results in membrane injury

Effects upon DNA

Cell Cycle Checkpoints

DNA Repair

Effect on Cells: Chromosomal Changes

- 1. Deletions
- 2. Translocations
- 3. Fragmentation
- 4. Adhesion breaks between chromosomes
- 5. Polyploidy and aneuploidy

OThe number of these mutations is related to the dose of radiation

Consequences

- Inhibition of cell division
- Germ-line mutations
- Carcinogenesis

Effect Upon Cell Membranes

Effects Upon Proteins

Radiosensitive cells Comparing how much radiation affects different types of cells

Increasing radiosensitivity

* Law of Bergonie and Tribondeau

Embryonic cells Lymphocytes (White blood cell Erythrocytes (Red blood cells) Sperm **Epithelial cells** Endothelial cells Connective tissue cells Bone cells Nerve cells Brain cells Muscle colls

Effect of Radiation on Tissues

- Acute
 - Occur hours to days following radiation exposure
 - Due to depletion of stem cells in an organ or tissue
 - Apparent when cell number reduction > cell regeneration
 - Further radiation exposure leads to tissue death, irreversible tissue damage
 - Bone marrow, skin, GIT

Effect of Radiation on small blood vessels

• Late

- Occur months to years following radiation exposure
- Related to
 endothelial
 damage →
 intimal
 thickening,
 occlusion →
 ischaemic

Effects, large blood bessels

- Due to injury involving vasa vasora
- Transmural necrosis
- Aneurisms

Heart

- Pericardium Fibrosis
- Myocardium -Radiation induced cardiomyopathy – minimal inflammatory infiltrate
- Worse when cardiotoxic drugs are used
- Endocardium valvular thickening, fibrosis, calcification
- Coronary intimal foam cell accumulation

Nervous System

- Brain, spinal cord, peripheral nerve
- Neurons resistant
- Injury to glial and oligodendrocytes
- Glial and vascular injury vasogenic oedema due to Blood Brain Barrier Dysruption
- Endothelial vasculopathy
- Spinal cord transient myelitis (2-4 months)
- Delayed myelitis (20-30 months)

Peripheral Nerves

- Fairly resistant
- Peripheral neuropathy
- Perineural inflammation and ganglionitis

Bone Marrow

- Highly sensitive
- Stem cell injury leading to pancytopenia
- Myelodysplasia may predominate

Other tissues

- Ovaries/Testes, highly susceptible germ cell necrosis, supporting cells are retained
- Eye optic neuropathy, lens opacity, retinal injury
- Lymphoid cells disorders in homing and recirculation
- Endocrine hyperplasia hypoplasia

conclusion

- Ionizing induced injury affects the DNA/Proteins/lipid membranes
- Microvascular injury is associated with late injury
- Repair with fibrosis is an intermediate manifestation
- Long term neoplasia

Ionizing radiation hazard symbol

2007 ISO radioactivity danger logo. 🗗