Haemopoiesis By Dr Kibet P Shikuku UON

divisions and steps of *differentiation*, from stem cells

Cell hierarchy (Haemopoiesis schematic representation)

HEMATOPOIESIS Subdivisions

HEMATOPOIESIS Lineages for

Pluripotent stem cell (Hemocytoblast) Lymphopoiesis

Monocytopoiesis

Granulopoiesis

Erythropoiesis Thrombopoiesis

Lymphoblast	Monoblast	Myeloblast	Pro-erythroblast	Megakaryoblast
		Pro-Myelocyte	Basophilic erythroblast	
		Myelocyte	Polychromatic erythroblast	
		Metamylelocyte	Orthocromatic erythroblast	
Lymphocyte	Monocyte	Band granulocyte	Reticulocyte	Megakaryocyte
				B
		Granulocyte	RBC	Platelets

Similar precursor produces Natural killer cells

B lymphocytes become Plasma cells

Similar precursor produces Mast cells

Monocyte or a related precursor gives rise to many specialized phagocytes & antigenpresenting cells

Macrophages Kupffer cells Langerhans cells Dendritic cells Microglia Osteoclasts etc

Sites of Haemopoiesis

- Yolk sac
- Liver and spleen
- Bone marrow
 - Gradual replacement of active (red) marrow by tissue inactive (fatty)
 - Expansion can occur during increased need for cell production

BLOOD IS MADE

- Axial skeleton
- Inner spongy bone
- Bone marrow is in the holes
- Bone marrow is a highly organized / regulated organ

BONE MARROW: THE SOURCE OF BLOOD AND OUR IMMUNE SYSTEM

Normal bone marrow

- All blood cells arise from "mother" (stem) cells
 - -Self renewing
 - -Safe from harm
 - -Pluripotent
- Blood production is highly regulated
 - Messages from the body (e.g. erythropoietin from kidney)
 - Microenvironments produce specific cells
 - Cytokines (SCF, IL3)
 - Growth factors (G-CSF)

Introduction

- Limited Life span of :
 - Granulocytes
 - Erythrocytes
 - Platelets
 - Lymphocytes

Introduction

- Stem cells
 - Self renewal
 - Plasticity
- Progenitor cells
 - Developmentally-restricted cells
- Mature cells
 - Mature cell production takes place from the more developmentally-restricted progenitors

Stem cells

- Self-renewal
 - Normally in G₀ phase of cell cycle
 - The capacity for self-reproduction is vastly in excess of that required to maintain cell production for normal lifetime
 - As cells increase in number they differentiate as well
- Multipotentiality
 - Capacity to generate cells of all the lymphohaemopoietic lineages

Progenitor cells

 Encompasses from immediate progeny of stem cells to differentiation cells committed to one lineage

- Progenitor cells become progressively more restricted in their differentiation and proliferation capacity
 - Late progenitor cells eventually restricted to one lineage

Regulation of Haemopoiesis

• There should be a balance between cell production and cell death except at the times of requirement

Regulation of Haemopoiesis

Interaction of stromal cells, growth factors and haemopoietic cells

Local and Humoral regulation of Haemopoiesis

Figure 1.3 The relative influence of local control and humoral regulation at different stages of development.

Haemopoietic growth factors

- GM-CSF
 - Granulocyte-Macrophage colony stimulating factor
- M-CSF
 - Macrophage colony stimulating factor
- Erythropoietin
 - Erythropoiesis stimulating hormone
- (These factors have the capacity to stimulate the proliferation of their target progenitor cells when used as a sole source of stimulation)

• Thrombopoietin

• Stimulates megakaryopoiesis

Haemopoietic growth factors

- Cytokines
 - IL 1 (Interleukin 1)
 - IL 3
 - IL 4
 - IL 5
 - IL 6
 - IL 9
 - IL 11
 - TGF-β

SCF (Stem cell factor, also known as kit-ligand)
Cytokines have no (e.g IL-1) or little (SCF) capacity to stimulate cell proliferation on their own, but are able to synergise with other cytokines to recruit nine cells into proliferation

Erythropoiesis and erythrocytes

- Lifespan 120 days
- Non nucleated
- Biconcave disc
- Production regulated by Epo
- Needs Fe, B12, folate & other elements for development

ERYTHROPOIESIS

In developing from the stem cell, the RBC has to undergo the most changes, which can be categorized into several morphological/stainable stages and into less easily detected early stages *

-blast is the common suffix for an immature form of a cell

ERYTHROPOIESIS

polychromatophilic

This idea continues in the form of the *reticulocyte* which is an RBC released to the blood, but still with a network of blue ribosomal material persisting amongst the hemoglobin

ERYTHROPOIESIS 2

Hemopoiesis

Dr F K Abdallah Senior Lecturer Haematology & Blood Transfusion

Lecture outline

- Definition
- History
- Anatomy
- Physiology

Definition

• Hemopoiesis is the formation, development, and specialization of cellular elements into mature functional cells. .

History

- Mid 17th century red cells observed in microscope
- 1868: Neumann demonstrated that red cells arise from precursors in the BM.
- Previously derived from leucocytes and platelets in the lymphoid system, adrenals and embryonal liver

- There are three basic stages of hemopoiesis;
 - [1] Mesoblastic phase,
 - [2] Hepatic phase, and
 - [3] Medullary phase

<u>Mesoblastic</u>

Begins at 2nd to 7th week of gestation:
a. Embryonic;

b. In yolk sac;

c. Condensation of mesenchymal cells - form **blood islands**;

d. nucleated blood cells form

Hepatic

- Begins $12^{th} 16^{th}$ week of gestation
- In liver, thymus, and spleen, lymph nodes somewhat latter;
- Forms anucleated RBCs

<u>Myeloid</u>

- 20th week to adulthood
- In bone marrow;
- Begins with establishment of ossification centers in bones;
- All blood cell types found in adults can be produced by the bone marrow;

<u>Anatomy</u>

- Active marrow space in a child about 15Kgs is 1000 – 1400 g: total marrow = 1600 cc
- Adult : active 1200 1500 g Total marrow 2600 – 4000 cc
- Large space in the neonate progressively decreases with age with the marrow becoming increasingly filled with fat

- 4. Hemopoietic differentiation requires an appropriate micro-environment
 - Commences in the yolk sac of the embryo in the 2nd to 7th month apparent in the liver in the 12th – 16th week, in the bone: 20th – adult
 - Newborns: Most bone cavities are active with increasing age upper shaft of femur, humerus and pelvis and vertebra
 - Extra-medularly hemopoiesis in pathological states_ liver, spleen, lymph nodes, adrenals, adipose tissue, kidney

- Microenvironment of the marrow cavity is a vast network of vascular channels of sinusoids in which float fronds of hemopoietic cells plus fat cells
- Vascular and hemopoietic compartments are joined by reticular fibroblastoid cells that form the adventitial surfaces of the vascular sinuses and extend cytoplasmic processes to create a lattice supportive framework on which the blood cells are found

- Function of fibroblastoid cells
 - Supportive framework
 - Production of essential hemopoietic colony stimulating factors

Marrow micro-circulation

- Central and radial arteries ramify in the cortical capillaries which in turn join the marrow sinusoids and drain into the central sinus
- Cells leave the BM sinusoids and then join the venous circulation through the commit ant veins
- Luminal surfaces of the vascular sinusoids is lined with endothelial cells, the cytoplasmic extensions of which overlap, inter-digitate.
- Hemopoietic cells escape into the sinus for transport into the general circulation occurs through gaps that develop in this endothelial lining and thru' endothelial cells cytoplasmic pores
- N/B: destruction of the BM micro-environment inhibits long term marro cultures aplastic anemia

Physiology

- Maintenance of a constant no. of red cells, white cells and platelets under regulatory mechanisms
 - 4 11 x 10¹¹ WBCs
 - $4.5 5.5 \times 10^{12}$
 - $150 450 \times 10^9$ per microliter of blood \

- 1. A single pleuropotent stem cell is capable of:
 - 1. Giving rise to many committed progenitor cells
 - 2. Pleuropotent stem cells capable of self renewal
- 2. Committed progenitor cells:
 - 1. Form differentiated recognizable precursors of the specific types of blood cells
 - 2. Are limited in proliferative potential and are not capable of indefinite self renewal 'die by differentiation' and are repopulated on influx from pluripotent stem cell pool
 - 3. Proliferative potential and differentiation of stem cells and committed progenitor influenced by
 - 1. Adventitial cells
 - 2. Alpha HGF produced in the reaction to the circulating levels of a particular differentiated cell type

• Large reserve

- 2×10^{11} Rbc/day and increased by x 4 when required
- WBC capacity can be increased to x 12 in normal demand
- Maintenance by regulatory substances HGF
 - Properties
 - Lineage MAP
 - Cytokine sources and actions
 - Various maturation pathway

<u>Leucopoiesis</u>

- Myeloblast
- Promyelocyte
- Myelocyte
- Metamyelocyte
- Band or stab
- Polymorphonuclear granulocyte
 - Eosinophil
 - Basophil
 - Monocyte

<u>Erythropoiesis</u>

- Proerythroblast
 - Loss of nucleolus, sideroblastic granules
- Basophilic Erythroblast
- Polychromatic normoblast
- Intermediate (Orthochromatic)
 - Loss of nucleus
- Reticulocyte
 - Matures in 2-3/7
- Mature Erythrocyte
 - No synthetic activity
 - Hemoglobinisation in 2-4/7

Thrombopoiesis

- Pluripotent stem cell
 - CFU M
 - Erythropoietin
 - Thrombopoietin
- Megakarycyte precursor
 - 4 8 16 32 Nucleus
- Megakarycyte

Blood cell development. A blood stem cell goes through several steps to become a red blood cell, platelet or white blood cell.

Hemopoietic growth factors

- Colony stimulating factors (CSFs)
- Cytokines
 - Interferons
 - Interleukins
- HGFs
 - FIK2 ligand
 - GM CSF
 - G CSF
 - M GSF
 - Erythropoietin
 - Thrombopoietin

Sources

- Sources:
 - Fibroblasts
 - Endothelial cells, epithelial cells
 - Activated T cells
 - Monocytes, macrophages

<u>Clinical Use</u>

- Clinical use:
 - EPO, GCSF, GMCSF