HEMOPOIESIS

- **Hemopoiesis** is the formation, development and specialization of cellular elements into mature functional cells.
- There are 3 basic stages of hemopoiesis:
 - Mesoblastic:
 - Begins at 2nd to 7th week of gestation.
 - Embryonic
 - In yolk sac
 - Condensation of mesenchymal cells to form blood islands
 - Nucleated blood cells form
 - Hepatic:
 - Begins at 12th to 16th week of gestation
 - In liver, thymus and spleen, lymph nodes somewhat latter
 - Forms anucleated RBCs

• Myeloid:

- 20th week to adulthood
- In bone marrow
- Begins with establishment of ossification centres in bone
- All blood cell types found in adults can be produced by the bone marrow.

Anatomy:

- Active marrow space in child of about 15kg is 1000 to 1400g, total marrow is 1600cc.
- Adult: active marrow space is 1200-1500 g, total marrow is 2600 to 4000cc.
- Large spaces in the neonate progressively decrease with age with the marrow becoming increasingly filled with fat.
- Function of fibroblastic cells:
 - o Supportive framework
 - Production of essential hemopoietic colony stimulating factors.

Physiology:

- Maintenance of a constant number of red cells, white cells and platelets requires regulatory mechanisms:
 - 3-11x10¹¹ WBCs
 - o 4.5-5.5 x10¹² RBCs
 - o 150-450 x10⁹ platelets

Origins of hemopoiesis:

- Single pluripotent (multipotent) stem cell is capable of:
 - Giving rise to many committed progenitor cells
 - o Self-renewal
- Committed progenitor cells:
 - Form differentiated recognizable precursors of the specific types of blood cells
 - Are limited in proliferative potential and are not capable of indefinite self-renewal 'die by differentiation' and are repopulated on influx from pluripotent cell pool
 - Proliferative potential and differentiation of stem cells and committed progenitor influenced by:
 - Adventitial cells
 - Alpha HGF produced in reaction to circulating levels of a particular differentiated cell type.

Regulation of hemopoiesis:

- Large reserve
 - \circ 2 x10¹¹ RBC/day and increased x4 when required.
 - WBC capacity can be increased x12 in normal
- Maintenance by regulatory substances HGF
 - o Properties
 - o Lineage map
 - o Cytokine sources and actions
 - 0 Various maturation pathways

Leucopoiesis:

- 1. Myeloblast
- 2. Promyelocyte
- 3. Metamyelocyte
- 4. Band/stab
- 5. Polymorphonuclear granulocyte
 - o Eosinophil
 - o Basophil
 - 0 Neutrophil
 - Monocyte* (produced in this manner, but is not a granulocyte)

Erythropoiesis:

- Proerythroblast:
 - o Loss of nucleolus, sideroblastic granules
- Basophilic erythroblast
- Polychromatic normoblast
- Intermediate (Orthochromatic)
 - o Loss of nucleus
- Reticulocyte
 - Matures in 2-3 days
- Mature erythrocyte
 - No synthetic activity
 - Hemoglobinisation in 2 to 4 days.

Thrombopoiesis:

- 1. Pluripotent stem cell
 - Colony-forming unit (CFU)
 - o Erythropoietin
 - o Thrombopoietin
- 2. Megakaryocyte precursor
 - o 4 to 8 to 16 to 32 nuclei
- 3. Megakaryocyte

Lymphopoiesis

- 1. Lymphoid stem cell
- 2. Prolymphoblast
- 3. Lymphoblast
- 4. Lymphocyte.

Hemopoietic growth factors:

- Colony stimulating factors:
- Cytokines
 - o Interferons
 - 0 Interleukins
- HGFs
 - o FIK2 ligand
 - GM-CSF
 - o G-CSF
 - M-CSF
 - o Erythropoietin
 - o Thrombopoietin

- Sources of HGFs
 - 0 Fibroblasts
 - o Endothelial cells epithelial cells
 - Activated T cells
 - o Monocytes, macrophages

©Kush!