Ankle Fractures

Dr Oburu

Epidemiology

- Most common weight-bearing skeletal injury
- Highest incidence in elderly women
- Unimalleolar 68%
- Bimalleolar 25%
- Trimalleolar 7%
- Open 2%

History

- Consider the relevant factors of the injury
- Mechanism of injury
- Time elapsed since the injury
- Soft-tissue injury
- Has the patient ambulated on the ankle?
- Patient's age / bone quality
- Associated injuries
- Comorbidities

Physical Exam

- Neurovascular exam
- Note obvious deformities
- Pain over the medial or lateral malleoli
- Palpation of ligaments about the ankle
- Palpation along course of the entire fibula
- Pain at the ankle with side to side compression of the tibia and fibula (5cm or more above the joint) may indicate a syndesmotic injury
- Examine the hindfoot and forefoot

Radiographic Evaluation

•Plain Films

- -AP, Mortise, Lateral views of the ankle
- -Image the entire tibia to knee joint
- -Foot films when tender to palpation
- Common associated fractures are:
 - •5th metatarsal base fracture
 - Calcaneal fracture

Mortise View

10 degrees internal rotation of 5th MT with respect to a vertical line

Goergen JBJS 1977

Other Imaging Modalities

• Stress Views

- Gravity stress view [Michelson CORR 2001]
- Manual stress views

• CT

- Joint involvement
- Posterior malleolar fracture pattern
- Pre-operative planning
- Evaluate hindfoot and midfoot if needed

MRI

- Ligament and tendon injury
- Talar dome lesions
- Syndesmosis injuries

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Weber Classification

•Concept - the higher the fibula the more severe the injury

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Posterior Malleolus Fracture

Haraguchi et al. JBJS 2006

type

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Syndesmotic Injury: Treatment

IF INSTABILITY PRESENT → OPERATIVE INTERVENTION

OBTAINING & MAINTAINING ANATOMIC REDUCTION REDUCES LONG TERM DISABILITY & IMPROVES sMFA

Leeds JBJS 1984 Weening JOT 2005

Ankle Fracture Treatment

Nonoperative Treatment

Indications:

- Nondisplaced stable fracture with intact syndesmosis
- Patient whose overall condition is unstable and would not tolerate an operative procedure

Management:

- -Below the knee cast for 4-6 weeks
- -Follow with serial x-rays and transition to walking boot or short-leg walking cast

Nonoperative Treatment

Clinical example

–SER injury–Treated in walker boot WBAT

-Films 4 months post injury show healed stable mortise

-Less than 3 mm displacement of the isolated fibula fracture with a reduced ankle mortise does not require surgery

Operative Treatment: Surgical Indications

Instability

- Talar subluxation
- Malposition
 - Joint incongruity
 - Articular stepoff

Operative Treatment: Initial Management

- If displaced \rightarrow closed manipulative reduction (sedation may be necessary)
 - If reduced \rightarrow Compression dressing, splint, elevate
 - If soft tissue appropriate \rightarrow to OR for fixation
 - If swelling excessive [absent wrinkles, blisters]→ continue elevation
 - If irreducible → to OR for reduction and provisional vs definitive stabilization
- Pain control

Open Ankle Fractures

- Treat with appropriate antibiotics pre-op and 48 hr post-op
- I & D with immediate ORIF if clean wound
- ORIF and Ex Fix if severe soft tissue damage present to allow for wound care
- Low grade open results similar to closed fractures
- High grade open results have increased cost, increased number of complications, and poorer overall outcomes

Soft Tissue Problems

• Dislocation with skin compromise

-Immediate reduction required!
-If the talus is not reduced beneath the plafond, there is increased pressure on the skin and increased risk of skin breakdown, that all may lead to wound breakdown and infection

-10% have skin slough when a timely reduction is not obtained

Ligamentous and Tendon Injuries About the Ankle

Ankle Sprains

- Most common ligamentous injury
- One sprain per day per 10,000 people
- 40% will have intermittent chronic problems (Garrick, Am J Sports Med, 1977)
- More common on the lateral aspect of the ankle

Ankle Sprain

- Differential Diagnosis
 - Syndesmotic Injury
 - Peroneal tendon subluxation
 - Posterior tibial tendon tear
 - Achilles tendon tear
 - 5th metatarsal base fracture
 - Midfoot injuries
 - Lateral talar process fracture
 - Anterior process of calcaneus fracture

Ankle Sprain

- History
 - Description of the injury
 - Position of the ankle during the injury
 - Able to continue to play or bear weight
 - Previous injury
 - Site of injury

Ankle Sprain

- Physical Exam
 - Palpation over medial and lateral malleoli
 - Palpation over deltoid ligament
 - Palpation over ATFL, CFL, and PTFL
 - Neurovascular exam
 - Anterior drawer test for ATFL
 - Talar tilt to assess CFL
 - Squeeze test to look for syndesmotic injury

Lateral Ankle Sprains

Commonly missed diagnoses

- Peroneal tendon injuries
- Achilles injuries
- FX's
 - Lateral process of talus
 - Anterior process of calcaneus
 - Fifth metatarsal
 - Lisfranc injuries

- Osteochondritis dessicans

Lateral Ankle Sprains

- X-rays are based on careful physical exam
- MRI rarely indicated in the acute setting
- Consider stressing syndesmosis and Lisfranc joints if injury is suspected

Ankle Sprain Treatment

- RICE (Rest, Ice, Compression, Elevation) with ankle brace initially and protected weight bearing for Grade I and II
- ROM exercises
- Peroneal strengthening and proprioceptive training
- Bracing or taping for 4-6 weeks depending on activity
- Return to sports when able to cut without pain
- Severe sprain may require up to 6 months of protective bracing

Ankle Sprain Treatment

- Grade III sprain may require a walking boot or a cast for 4 - 6 weeks
- Extended period of protective bracing may be warranted
- Return to play criteria remain the same
- Need to be aware of possibility for syndesmosis injury (high ankle sprain)

Lateral Ankle Sprains

- Management surgical
 - Acute surgical repair not supported by literature
 - symptomatic chronic instability may require surgical intervention
 - Anatomic Brostrom repair favored over nonanatomic rerouting procedures

- 5% ankle sprains
- Forced eversion
- Injury to deltoid ligament
- May be associated with syndesmotic injury and/or Weber C fibula FX

- Tenderness/ swelling over deltoid
- External rotation test elicits pain in the deltoid and possibly in syndesmosis

- AP/LAT/OBLIQUE ankle x-rays to assess mortise and syndesmosis
 - Medial joint space widening
 - Syndesmotic widening
 - Presence fibula FX
- Consider external rotation stress x-rays if syndesmotic disruption is suspected

Management

- Stable (no talar subluxation)
 - Similar to lateral sprains
 - RICE, early wgt bearing, early ROM, functional brace, functional rehab
- Unstable (talar subluxation)
 - No talar subluxation is acceptable
 - Anatomic reduction and surgical stabilization of syndesmosis

Chronic Lateral Ankle Instability

- Persistent mechanical instability of the talocrural joint
- Develops after acute rupture in up to 20% of patients
- Related to functional lateral ankle instability
 - Defined by: frequent sprains, diff running on uneven surfaces, diff jumping or cutting
 - Related to: previous ankle sprain, chronic ankle instability, peroneal weakness
- Treatment: supervised rehabilitation program focusing on peroneal strengthening, proprioception, and coordination
Surgical Indications: Chronic Ankle Instability

- Continued instability or recurrent injury despite supervised rehabilitation and functional bracing (Semirigid pneumatic ankle brace).
- Surgical treatments
 - Evans Procedure- recon using entire P.Brevis
 - Watson-Jones: entire P.Brevis anatomic recon ATFL
 - Chrisman-Snook: recon ATFL and CFL using split P. Longus graft
 - Modified Brostrom procedure: direct repair of ligament, modified by Gould such that inferior ext retinaculum is used to reinforce repair

Syndesmosis Injury

•10% of ankle sprains

•Rupture of the interosseous ligaments between the tibia and fibula with or without fibular fracture

•Medial malleolar fracture or deltoid ligament rupture

•Persistent instability and gap in the joint after bimalleolar fixation

Syndesmosis Exam

•Squeeze Test

-Squeeze the syndesmosis above the ankle→pain

•Abduction-External Rotation Stress Test

> -Further instability with external rotation (may be shown with x-ray)

Figure 2-37. A, Squeeze test used to diagnose syndesmotic injury. B, Abduction-external rotation stress test.

Syndesmotic (High) Ankle Sprains

- AP/LAT/OBLIQUE ankle x-rays
 - Syndesmotic widening
 - Medial joint space widening
 - Presence of fibula FX
- External rotation stress x-rays
 - Severe pain associated with normal x-rays
- Must get tib/fib x-rays to rule out high fibula fracture

Syndesmosis Injury

- Treatment
 - Non-displaced without fracture
 - May consider casting for 6 weeks (high ankle sprain)
 - Surgical treatment with syndesmotic screws/ tightrope
 - Displaced
 - Surgical treatment with syndesmotic screws/ tightrope

Achilles Tendon Rupture

- History
 - Acute pain in the back of the ankle with contraction, no antecedent history of calf or heal pain
 - Average age 35
 - Steroids, fluorquinolones, and chronic overuse may predispose to rupture
- Pathology
 - Rupture occurs 3-4 cm above the Achilles insertion in a watershed area

Achilles Tendon Rupture

•Physical Exam

- -Tenderness over achilles tendon
- -Palpable defect
- Positive Thompson's test
 Needle test- needle inserted midline 10cm proximal to the superior aspect of the calcaneous moves towards the foot when the calf is squeezed

Achilles Tendon Ruptures

• Surgical repair

- Younger active patients
- Nonoperative treatment
 - Older sedentary patients
 - Patients with increased risk of soft tissue complications
 - IDDM
 - Smokers
 - Vascular disease

Indications of Non-Operative Versus Operative Treatment

Indications:

- Non-Operative Tx may be indicated for older patients with minimally displaced ruptures
- Non-Operative may be indicated for patients who are at an increased operative risk due to age or medical problems
- Note that younger patients w/ expectations of participating in sports such as basketball may not be good candidates for non operative Tx

Management of Non-Operative Tx

- Short leg cast strategy (SLC)
 - SLC is applied w/ ankle in plantarflexion
 - Cast is brought out of equinus over 8-10 weeks
 - Walking is allowed (in the cast) at 4-6 weeks
 - Alternatively, consider using functional brace starting in 45 degrees of flexion
 - Following casting, a 2 cm heel lift is worn for an additional 2-4 months
- Long leg cast (LLC)
 - Initial LLC in gravity equinus for 6 weeks, followed by short leg cast for 4 weeks

Achilles Tendon Rupture

•Surgical treatment

- Preferred for athletesMedial incision avoids the sural nerve
- -Percutaneous vs. Open treatments described
- –Isolate the paratenon as a separate layer

Chronic Achilles Tendon Rupture

•History

–Remote hx trauma, post pain, gradual improvement of symptoms, palpable tendon defect.
–No hx trauma, gradual thickening of tendon, AM startup pain, pain ascending/descending stairs.

•Physical Exam

–"Hatchet" posterior calf at site of defect at resolution of swelling
–Positive Thompson test

-Weakened plantar flexion

Tibial Plafond Fractures

Topic Outline

Introduction Incidence Local anatomy and mechanism Classification History and complications Treatment techniques Results Summary and Conclusions

The Spectrum of Fracture

The Spectrum of Soft Tissue Injury

The Soft Tissue Injury!!

Red Blisters

Open Fracture

Clear Blisters

Tibial Plafond Fractures - Results General Comments

Terrible Injuries "Excellent Results" are rarely achieved Fair-Good results are the norm Outcomes are impossible to predict Treatment complications must be avoided

Tibial Plafond Fractures - Results *Terrible Injuries*

Bone

Tibial Plafond Fractures Excellent results are only rarely achieved

Reduction: Ligamentotaxis

- External fixator
- Femoral distractor
- Manual traction
- Well placed clamps

Fractures and Dislocations of the Mid-foot Including Lisfranc Injuries

Lisfranc's Joint Injuries

- Any bony or ligamentous injury involving the tarsometatarsal joint complex
- Named after the Napoleonic-era surgeon who described amputations at this level without ever defining a specific injury

Incidence

- Generally considered rare (1 per 55,000 people per year or 15/5500 fractures)
- As index of suspicion increases, so does incidence
- Approximately 20% of Lisfranc's injuries may be overlooked (especially in polytraumatized patients)

Mechanisms of Injury

- Trauma: motor vehicle accidents account for one third to two thirds of all cases (incidence of lower extremity foot trauma has increased with the use of air bags)
- Crush injuries
- Sports-related injuries are also occurring with increasing frequency

Diagnosis

- Requires a high degree of clinical suspicion
- 1. 20% misdiagnosed
- 2. 40% no treatment in the 1st week
- Be wary of the diagnosis of "midfoot sprain"

Clinical Findings

Midfoot pain with difficulty in weight bearing
Swelling across the dorsum of the foot
Deformity variable due to possible spontaneous reduction

Clinical Findings

•Ecchymosis may appear late

Local tenderness at tarsometatarsal joints
Gentle stressing plantar/ dorsiflexion and rotation will reveal instability

Clinical Findings

•Check neurovascular status for compromise of dorsalis pedis artery and/ or deep peroneal nerve injury

•Asses for possible COMPARTMENT SYNDROME

•AP, Lateral, and 30° Oblique X-Rays are mandatory

•AP: The medial margin of the 2nd metatarsal base and medial margin of the medial cuneifrom should be alligned

•Oblique: Medial base of the 4th metatarsal and medial margin of the cuboid should be alligned

•Lateral: The dorsal surface of the 1st and 2nd metatarsals should be level to the corresponding cuneiforms

- Standing views provide "stress" and may demonstrate subtle diastasis
- Comparison views are very helpful
- Associated fractures:
 - 1. Base of 2nd metatarsal
 - 2. Avulsion navicular
 - 3. Isolated medial cuneiform
 - 4. Cuboid

•Additional imaging:

- 1. True stress views or fluroscopy
- 2. CT Scans
- 3. Bone scan for persistent pain with no radiographic findings
- 4. If suspicious: repeat x-rays and keep looking

Treatment

- Early recognition is the key to preventing long term disability
- Anatomic reduction is necessary for best results: displacement of >1mm. or gross instability of tarsometatarsal, intercuneiform, or naviculocuneiform joints is unacceptable
- Goal: obtain or maintain anatomic reduction

Treatment

•Nonoperative: for nondisplaced injuries with normal weightbearing or stress x-rays

•Short leg cast •4 to 6 weeks nonweight bearing •Repeat x-rays to rule out displacement as swelling decreases •Total treatment 2-3 months