Malignant Bone tumors

Objective

Learn primary and secondary malignant bone tumors and tissue of origin

Appreciate pathology in clinical, imaging and tissue diagnosis

Diagnostic and treatment principles

Epidemiology

- Bone tumors are rare
- Classification based on histo morphology
- Team work in making diagnosis from (clinical features. Radiological and histo morphological
- Many tumors have characteristic features
- Immunohistochemistry and genetic needed for final classification
- Congenital, Hereditary and non hereditary raise the risk of bone tumors

General considerations

- Bone Tumors can be divided into primary and secondary.
- Secondary tumors can be further subdivided into

Metastatic tumors

Tumors resulting from contiguous spread of adjacent soft tissue neoplasms

Tumors representing malignant transformation of the pre-existing benign lesions

RISK FACTORS FOR BONE CANCER

Cancer	Risk factor
Osteosarcoma	P53& RB onco-gene mutation History of radiation therapy Paget disease Implanted metal prostheses Rothmund-Thomson syndrome
Ewing sarcoma	Translocation in chromosomes 11 and 22(95%), Xsome21 and 22(5-10%)
chondrosarcoma	Presence of benign cartilage tumors (enchondromas and osteochondromas)

Tissue of source consideration

Tissue	Sarcoma
bone	Osteosarcoma
cartilage	Chondrsarcoma
fibrous	Fibrosarcoma
haemopetic	Multiple myeloma/ leukemia/lymphoma
muscle	Leimyosarcoma
Fat	liposarcoma
varscular	agiosarcoma
others	chorndoma

Important features of bone tumors

- The ability of some to dedifferentiate
 eg., enchondroma or a low-grade chondrosarcoma transforming into
 a high-grade sarcoma
- 2.Tendency of high-grade sarcomas to *arise in damaged bone*, at the sites of *bone infarcts, radiation osteitis and Paget's disease*

CLINICAL FEATURES

- Pain
- Swelling
- Fracture
- Constitutional disturbance
- Cord compression and sensory motor deficit
- Others based on the origin of bone metastasis

PAIN

- non-specific symptom, but useful differential diagnosis.
- benign non-growing lesions tend to be asymptomatic

Pain suggest:

locally aggressive lesions (eg., aggressive osteoblastoma and GCT), and malignant tumors

- Pathologic fracture complicating either benign or malignant tumor
- Significant local tissue inflammatory reaction to the tumor.
- Neurovascular infiltration- neurogenic pain

Differential diagnosis

- Osteomyelitis
- Sickle
- Gout/metabolic syndrome
- brown tumor
- Neuropathic osteoarthropathy/charcot
- Hydatid cyst

INVESTIGATION

- History and physical examination dictates the mode of investigation
- X-Ray
- CT-Scan
- MRI
- BONE SCAN/US
- Baseline heamatological/ biochemical test
- Biopsy

X-RAY

- Bone response and bone destruction
- Fractures
- Matrix
- Soft tissue involvement
- Metastasis to the lungs/bone

CT-SCAN

- High radiation test- justify
- Demonstrate calcification where MRI and X- ray fail
- Non contrast CT diagnose chest metastasis
- Whole body CT scan indicated in suspected metastasis
- Ct fluoroscopy guide biopsy and interventional procedure

MRI

- Superior in diagnosis, staging, monitoring treatment
- T1 evaluate bone marrow
- Fat suppression to demarcate tumor from normal tissue
- Gadolinium useful in detecting special characteristic, response to treatment, and recurrence
- Facilitate state of art care by combining features of bone lesion, morphology, anatomy and anatomical relationship
- Recognize MRI artifacts to make appropriate decision

Nuclear medicine and US

- TmDP 99
- Non specific
- Detects bone metabolism
- Remains as a image of detecting bone tumor
- Viewed together with others

Detect sub periosteal tumor

- Accurately assess cartilage cap of osteochondroma
- Monitor soft tissue extension
- Diagnosis recurrence
- Guided biopsy
- ? Future assessment of treatment response

Metastatic bone disease origin

Most common	malignancies producing skeletal metastases:
Adults	More than 75% of skeletal metastases originate from carcinomas of the prostate, breast, kidney, and lung. Also common are metastases from thyroid and colon cancers. And do not forget melanoma.
Children	Neuroblastoma, rhabdomyosarcoma, and retinoblastoma

Metastatic Radiographic features

Radiographic appearance of the metastatic tumors

Purely lytic (kidney, lung, colon, and melanoma)

Purely blastic (prostate and breast carcinoma)

Mixed lytic and blastic (most common appearance

DECISION MAKING

Criteria	Age Gender	
Demographics		
Affected bone	Single or multiple Long, short or flat	
Localization in longitudinal axis	Epiphyseal Metaphyseal Diaphyseal	
Localization in axial axis	Central Eccentrical Cortical Yuxtacortical	
Destruction pattern	Geographical (lytic, sclerotic or mixed) Infiltrative (lytic, sclerotic or mixed) Moth-eaten	

Periosteal reaction Sunburst

Hair-on-end

Codman's triangle

Onion-skin

Bone matrix Osteoid

Cartilaginous

Amorphous

MRI signal Fat

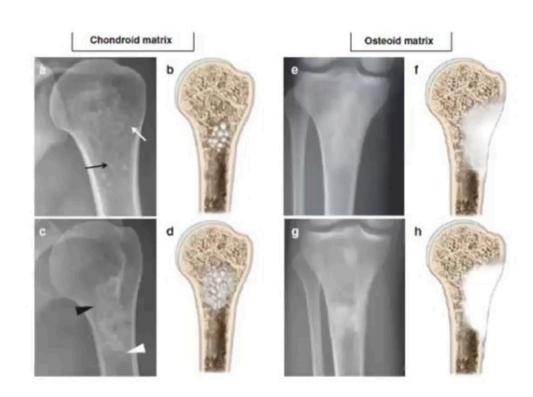
Fibrous/sclerotic

Myxoid

Hemorrhage

Edema (bone marrow or soft

tissues)


Contrast enhancement

Interventional procedures in treatment

- Biopsy
- vascular embolization
- Vertebroplasty and kyphoplasty for spine metastasis
- Cementoplasty for pelvic pain control
- Palliative thermal ablation for MBD

Six questions for appropriate differential diagnosis

- 1. What type of matrix is being made?
- (a) Calcification
- (b) Bone or osteoid (fluffy, cloudlike densities)
- (c) Cartilage (arcs and rings, popcorn)
- (d) Fibrous (ground-glass)
- (e) Cystic (fallen-leaf)

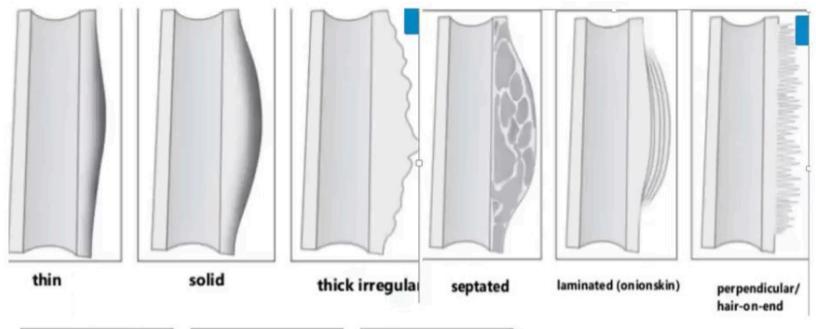
- 2. If bone is being made, what type is it?
- (a) Normal
- (b) Reactive
- (c) Tumor

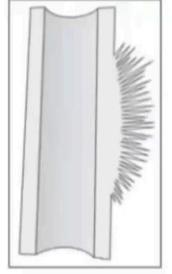
- 3. What is the bone doing to the lesion and/or what is the lesion doing to the bone (morphology)?
- (a) Border
- (b) Pattern of destruction
- (c) Periosteal reaction
- (d) Matrix
- (e) Soft tissue mass

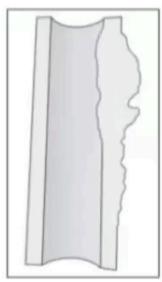
- 4. What is the pattern of destruction?
- (a) Geographic
- (b) Moth-eaten
- (c) Permeate

5. What location in the bone is the lesion and which bone

- (a) Epiphyseal
- (b) Metaphyseal
- (c) Diaphyseal




6. What is the age of patient?


Age	Most common malignant tumor
0- 10	Ewing sarcoma, leukemia, neuroblastoma metastasis
10 - 20	Osteosarcoma Ewing sarcoma adentimanoma
20- 40	Chondrosarcoma lymphoma
>40	Metastasis Multiple myeloma lymphoma Leukemia MFH Secondary osteosarcoma(pagets) chondrosarcoma

Biological activity depiction by periosteal reaction

Non aggressive	Solid type Single layer lamellated
aggressive	Multilaminated(onion skin) Spiculated Hair on head Sunburst Codmans triangle

sunburst disorganized

Codman triangle

Biological activity of tumor

Solid Eg: Post traumatic, HPOA

Eg: Ewings, Osteomyelitis

Sunburst Eg: Osteosarcoma, Ewings sarcoma

Eg: Osteosarcoma, Ewings sarcoma

Less malignant

More malignant

Types of biopsy

- Frozen sections(intraoperative)
- FNA
- Trucut
- Curettage
- Resection and amputation
- Nb controlled decalcification of each specimen to avoid over decalcification
- Adjunctive diagnostic technique- histochemistry, immunohistochemistry, cyto genetic/molecular genetic, electron microscopy

BIOPSY and Histological features of malignant bone tumors

Pattern of growth (eg., sheets of cells vs. lobular architecture)

Cytological characteristics of the cells

Presence of necrosis and/or hemorrhage and/or cystic change Matrix production

Relationship between the lesional tissue and the surrounding bone (eg., sharp border vs. infiltrative growth

Ennecking staging of bone tumors

Stage	Grade	Site (1)	Metastasis
IA	Low Grade	T1 - intracompartmental	M0 (none)
IB	Low Grade	T2 - extracompartmental	M0 (none)
IIA	High Grade	T1 - intracompartmental	M0 (none)
IIB	High Grade	T2 - extracompartmental	M0 (none)
Ш	Metastatic	T1 - intracompartmental	M1 (regional or distant)
Ш	Metastatic	T2 - extracompartmental	M1 (regional or distant)

Principles of treatment

- Multi disciplinary team approach
- History and physical examination(tailored to history)
- Biopsy- at tertiary Centre. Longitudinal incision, avoid tissue dissection, hemostasis
- Radiation
- Chemotherapy
- · Operation; excision, amputation, limb salvage

Treatment modalities

- Neoadjuvant is effective in Osteosarcoma and Ewing sarcoma
- Radiation used for lung metastasis in Ewing sarcoma
- · Radiation is not effective in Both chondrosarcoma and osteosarcoma
- Surgery is used for any of bone sarcoma
- Limb salvage considered if clinically possible and clear surgical margin.

Chemotherapy side effects

- Chemotherapy treatment can result in renal, cardiac, and hearing impairment.
- Patients undergoing chemotherapy must have baseline renal function testing
- cardiac function when anthracyclines are prescribed,
- audiogram in case of treatment with cisplatin.
- Sperm or oocyte cryopreservation should be offered prior to starting chemotherapy

Prognostic factors for bone tumors

- Positive factors include: localized extremity disease, >90% tumor necrosis response to chemotherapt
- Negative factors: incomplete surgical reception, old age, presence metastases, size >8cm and axial skeleton localization
- Chondrosarcoma overall prognosis depends on histologic grade, worst in dedifferentiated.

Limb salvage

Follow up

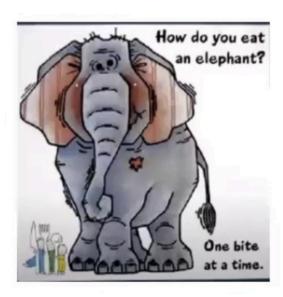
- Physical examination, functional assessment, and possible complications of any reconstruction
- Radiological examination of primary tumor site: X-ray and/or MRI are the most used tools
- Chest X-ray/CT scans to detect early lung metastases
- Bone scintigraphy for bone metasisis
- Every 3 months for the first 2 years.
- Every 4–6 months from 2nd to 5th year.
- Every 12 months from 5th to 10th year

HOMEWORK

Which is true about bone tumor?

- A. Multiple myeloma is seen in more than 55 years age and above
- B. Osteogenic sarcoma fourth decade
- C. Chondrosarcoma first decade
- D. Osteosarcoma fith decade

- The following tumors are benign except?
- A. Chondroma
- B. Chordoma
- C. Osteochondroma
- D. enchondroma


10 years old boy, LEAST common cause of proximal lytic lesion of head of femur is

- A. Plasmacytoma
- B. Metastasis
- C. Histiocytosis
- D. Bone tumor

Which of the following childhood tumors most frequently metastasizes of the bone?

- A. Neuroblastoma
- B. Gangliomeuroma
- C. Wilms' tumor
- D. Ewing's sarcoma

THANK YOU

