Ankle Fractures

Dr Oburu

Epidemiology

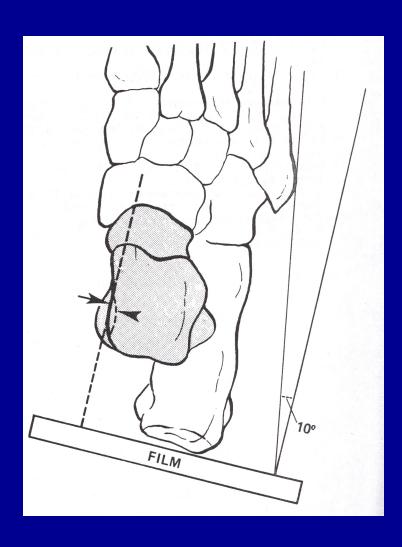
- Most common weight-bearing skeletal injury
- Highest incidence in elderly women
- Unimalleolar 68%
- Bimalleolar 25%
- Trimalleolar 7%
- Open 2%

History

- Consider the relevant factors of the injury
- Mechanism of injury
- Time elapsed since the injury
- Soft-tissue injury
- Has the patient ambulated on the ankle?
- Patient's age / bone quality
- Associated injuries
- Comorbidities

Physical Exam

- Neurovascular exam
- Note obvious deformities
- Pain over the medial or lateral malleoli
- Palpation of ligaments about the ankle >
- Palpation along course of the entire fibula
- Pain at the ankle with side to side compression of the tibia and fibula (5cm or more above the joint) may indicate a syndesmotic injury
- Examine the hindfoot and forefoot


Radiographic Evaluation

Plain Films

- -AP, Mortise, Lateral views of the ankle
- -Image the entire tibia to knee joint
- -Foot films when tender to palpation
- Common associated fractures are:
 - •5th metatarsal base fracture
 - Calcaneal fracture

Mortise View

Other Imaging Modalities

Stress Views

- Gravity stress view [Michelson CORR 2001]
- Manual stress views

CT

- Joint involvement
- Posterior malleolar fracture pattern
- Pre-operative planning
- Evaluate hindfoot and midfoot if needed

MRI

- Ligament and tendon injury
- Talar dome lesions
- Syndesmosis injuries

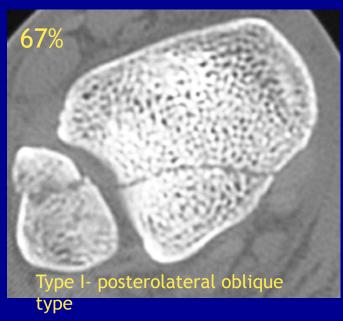
Understanding Ankle Fractures

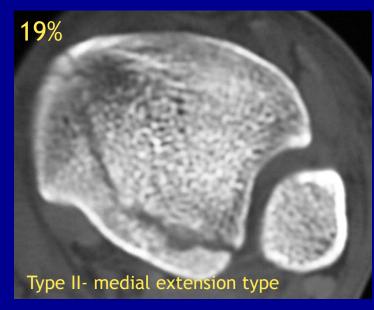
- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Weber Classification


- Based on location of fibula fracture relative to mortise.
- Weber A fibula distal to mortise
- Weber B fibula at level of mortise
- Weber C fibula proximal to mortise
- Concept the higher the fibula the more severe the injury



Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Posterior Malleolus Fracture

Understanding Ankle Fractures

- Classification systems
 - Lauge-Hansen
 - Weber
 - OTA
- Additional Anatomic Evaluation
 - Posterior Malleolar Fractures
 - Syndesmotic Injuries
 - Common Eponyms

Syndesmotic Injury: Treatment IF INSTABILITY PRESENT→ **OPERATIVE INTERVENTION OBTAINING & MAINTAINING ANATOMIC REDUCTION** REDUCES LONG TERM DISABILITY & IMPROVES SMFA Leeds JBJS 1984 Weening JOT 200!

Ankle Fracture Treatment

Nonoperative Treatment

- Indications:
 - Nondisplaced stable fracture with intact syndesmosis
 - Patient whose overall condition is unstable and would not tolerate an operative procedure
- Management:
 - -Below the knee cast for 4-6 weeks
 - Follow with serial x-rays and transition to walking boot or short-leg walking cast

Nonoperative Treatment

- Clinical example
 - –SER injury
 - -Treated in walker boot WBAT
 - -Films 4 months post injury show healed stable mortise
 - -Less than 3 mm displacement of the isolated fibula fracture with a reduced ankle mortise does not require surgery

Operative Treatment: Surgical Indications

- Instability
 - Talar subluxation
- Malposition
 - Joint incongruity
 - Articular stepoff

Operative Treatment: Initial Management

- If displaced→ closed manipulative reduction (sedation may be necessary)
 - If reduced→ Compression dressing, splint, elevate
 - If soft tissue appropriate→ to OR for fixation
 - If swelling excessive [absent wrinkles, blisters]→ continue elevation
 - If irreducible → to OR for reduction and provisional vs definitive stabilization
- Pain control

Open Ankle Fractures

- Treat with appropriate antibiotics pre-op and 48 hr post-op
- I & D with immediate ORIF if clean wound
- ORIF and Ex Fix if severe soft tissue damage present to allow for wound care
- Low grade open results similar to closed fractures
- High grade open results have increased cost, increased number of complications, and poorer overall outcomes

Soft Tissue Problems

- Dislocation with skin compromise
 - –Immediate reduction required!
 - -If the talus is not reduced beneath the plafond, there is increased pressure on the skin and increased risk of skin breakdown, that all may lead to wound breakdown and infection

-10% have skin slough when a timely reduction is not obtained

Ligamentous and Tendon Injuries About the Ankle

Ankle Sprains

- Most common ligamentous injury
- One sprain per day per 10,000 people
- 40% will have intermittent chronic problems (Garrick, Am J Sports Med, 1977)
- More common on the lateral aspect of the ankle

Ankle Sprain

- Differential Diagnosis
 - Syndesmotic Injury
 - Peroneal tendon subluxation
 - Posterior tibial tendon tear
 - Achilles tendon tear
 - 5th metatarsal base fracture
 - Midfoot injuries
 - Lateral talar process fracture
 - Anterior process of calcaneus fracture

Ankle Sprain

- History
 - Description of the injury
 - Position of the ankle during the injury
 - Able to continue to play or bear weight
 - Previous injury
 - Site of injury

Ankle Sprain

- Physical Exam
 - Palpation over medial and lateral malleoli
 - Palpation over deltoid ligament
 - Palpation over ATFL, CFL, and PTFL
 - Neurovascular exam
 - Anterior drawer test for ATFL
 - Talar tilt to assess CFL
 - Squeeze test to look for syndesmotic injury

Lateral Ankle Sprains

- Commonly missed diagnoses
 - Peroneal tendon injuries
 - Achilles injuries
 - FX's
 - Lateral process of talus
 - Anterior process of calcaneus
 - Fifth metatarsal
 - Lisfranc injuries
 - Osteochondritis dessicans

Lateral Ankle Sprains

- X-rays are based on careful physical exam
- MRI rarely indicated in the acute setting
- Consider stressing syndesmosis and Lisfranc joints if injury is suspected

Ankle Sprain Treatment

- RICE (Rest, Ice, Compression, Elevation) with ankle brace initially and protected weight bearing for Grade I and II
- ROM exercises
- Peroneal strengthening and proprioceptive training
- Bracing or taping for 4-6 weeks depending on activity
- Return to sports when able to cut without pain
- Severe sprain may require up to 6 months of protective bracing

Ankle Sprain Treatment

- Grade III sprain may require a walking boot or a cast for 4 - 6 weeks
- Extended period of protective bracing may be warranted
- Return to play criteria remain the same
- Need to be aware of possibility for syndesmosis injury (high ankle sprain)

Lateral Ankle Sprains

- Management surgical
 - Acute surgical repair not supported by literature
 - symptomatic chronic instability may require surgical intervention
 - Anatomic Brostrom repair favored over nonanatomic rerouting procedures

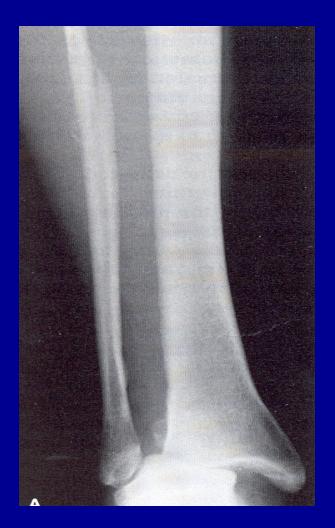
- 5% ankle sprains
- Forced eversion
- Injury to deltoid ligament
- May be associated with syndesmotic injury and/or Weber C fibula FX

- Tenderness/ swelling over deltoid
- External rotation test elicits pain in the deltoid and possibly in syndesmosis

- AP/LAT/OBLIQUE ankle x-rays to assess mortise and syndesmosis
 - Medial joint space widening
 - Syndesmotic widening
 - Presence fibula FX
- Consider external rotation stress x-rays if syndesmotic disruption is suspected

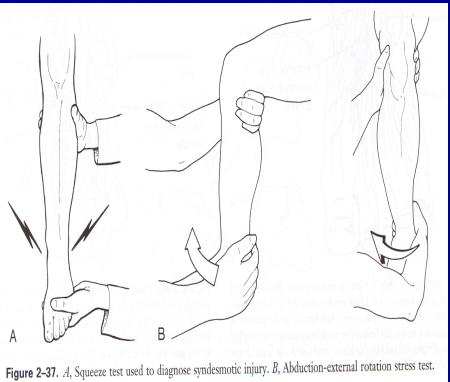
- Management
 - Stable (no talar subluxation)
 - Similar to lateral sprains
 - RICE, early wgt bearing, early ROM, functional brace, functional rehab
 - Unstable (talar subluxation)
 - No talar subluxation is acceptable
 - Anatomic reduction and surgical stabilization of syndesmosis

Chronic Lateral Ankle Instability


- Persistent mechanical instability of the talocrural joint
- Develops after acute rupture in up to 20% of patients
- Related to functional lateral ankle instability
 - Defined by: frequent sprains, diff running on uneven surfaces, diff jumping or cutting
 - Related to: previous ankle sprain, chronic ankle instability, peroneal weakness
- Treatment: supervised rehabilitation program focusing on peroneal strengthening, proprioception, and coordination

Surgical Indications: Chronic Ankle Instability

- Continued instability or recurrent injury despite supervised rehabilitation and functional bracing (Semirigid pneumatic ankle brace).
- Surgical treatments
 - Evans Procedure- recon using entire P.Brevis
 - Watson-Jones: entire P.Brevis anatomic recon ATFL
 - Chrisman-Snook: recon ATFL and CFL using split P. Longus graft
 - Modified Brostrom procedure: direct repair of ligament, modified by Gould such that inferior ext retinaculum is used to reinforce repair


Syndesmosis Injury

- •10% of ankle sprains
- •Rupture of the interosseous ligaments between the tibia and fibula with or without fibular fracture
- •Medial malleolar fracture or deltoid ligament rupture
- •Persistent instability and gap in the joint after bimalleolar fixation

Syndesmosis Exam

- •Squeeze Test
 - -Squeeze the syndesmosis above the ankle→pain
- Abduction-External **Rotation Stress Test**
 - -Further instability with external rotation (may be shown with x-ray)

Syndesmotic (High) Ankle Sprains

- AP/LAT/OBLIQUE ankle x-rays
 - Syndesmotic widening
 - Medial joint space widening
 - Presence of fibula FX
- External rotation stress x-rays
 - Severe pain associated with normal x-rays
- Must get tib/fib x-rays to rule out high fibula fracture

Syndesmosis Injury

Treatment

- Non-displaced without fracture
 - May consider casting for 6 weeks (high ankle sprain)
 - Surgical treatment with syndesmotic screws/ tightrope
- Displaced
 - Surgical treatment with syndesmotic screws/ tightrope

Achilles Tendon Rupture

History

- Acute pain in the back of the ankle with contraction, no antecedent history of calf or heal pain
- Average age 35
- Steroids, fluorquinolones, and chronic overuse may predispose to rupture

Pathology

Rupture occurs 3-4 cm above the Achilles insertion in a watershed area

Achilles Tendon Rupture

•Physical Exam

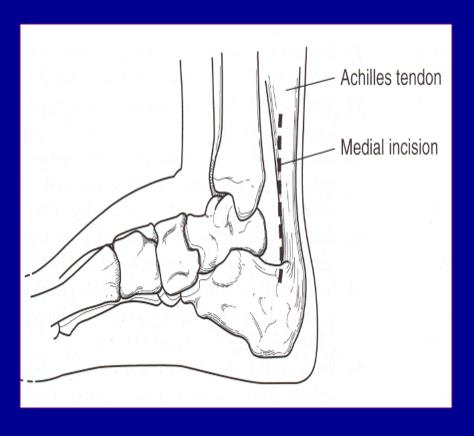
- -Tenderness over achilles tendon
- -Palpable defect
- -Positive Thompson's test
- -Needle test- needle inserted midline 10cm proximal to the superior aspect of the calcaneous moves towards the foot when the calf is squeezed

Achilles Tendon Ruptures

- Surgical repair
 - Younger active patients
- Nonoperative treatment
 - Older sedentary patients
 - Patients with increased risk of soft tissue complications
 - IDDM
 - Smokers
 - Vascular disease

Indications of Non-Operative Versus Operative Treatment

Indications:


- Non-Operative Tx may be indicated for older patients with minimally displaced ruptures
- Non-Operative may be indicated for patients who are at an increased operative risk due to age or medical problems
- Note that younger patients w/ expectations of participating in sports such as basketball may not be good candidates for non operative Tx

Management of Non-Operative Tx

- Short leg cast strategy (SLC)
 - SLC is applied w/ ankle in plantarflexion
 - Cast is brought out of equinus over 8-10 weeks
 - Walking is allowed (in the cast) at 4-6 weeks
 - Alternatively, consider using functional brace starting in 45 degrees of flexion
 - Following casting, a 2 cm heel lift is worn for an additional 2-4 months
- Long leg cast (LLC)
 - Initial LLC in gravity equinus for 6 weeks, followed by short leg cast for 4 weeks

Achilles Tendon Rupture

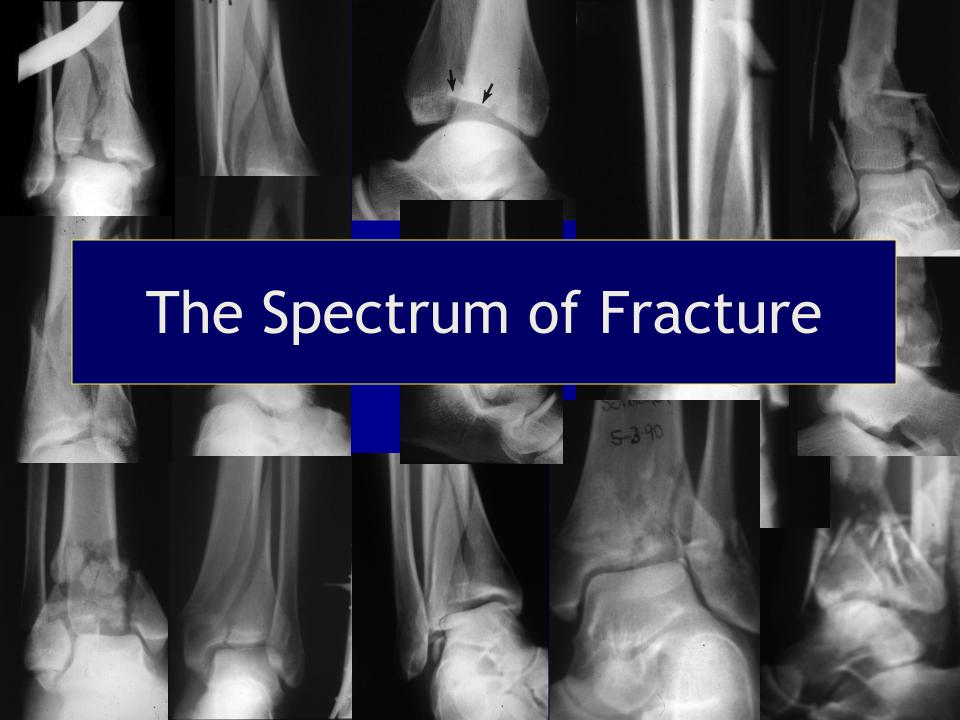
- •Surgical treatment
 - -Preferred for athletes
 - –Medial incision avoids the sural nerve
 - Percutaneous vs. Open treatments described
 - -Isolate the paratenon as a separate layer

Chronic Achilles Tendon Rupture

History

- -Remote hx trauma, post pain, gradual improvement of symptoms, palpable tendon defect.
- -No hx trauma, gradual thickening of tendon, AM startup pain, pain ascending/descending stairs.

•Physical Exam


- -"Hatchet" posterior calf at site of defect at resolution of swelling
- -Positive Thompson test
- -Weakened plantar flexion

Tibial Plafond Fractures

Topic Outline

- Introduction
- Incidence
- Local anatomy and mechanism
- Classification
- History and complications
- Treatment techniques
- Results
- Summary and Conclusions

The Soft Tissue Injury!!

Red Blisters

Clear Blisters

Open Fracture

Tibial Plafond Fractures - Results General Comments

- Terrible Injuries
- "Excellent Results" are rarely achieved
- Fair-Good results are the norm
- Outcomes are impossible to predict
- Treatment complications must be avoided

Tibial Plafond Fractures - Results Terrible Injuries

Bone

Soft Tissue

Tibial Plafond Fractures Excellent results are only rarely achieved

Unusually good!

Reduction: Ligamentotaxis

- External fixator
- Femoral distractor
- Manual traction
- Well placed clamps

Fractures and Dislocations of the Mid-foot Including Lisfranc Injuries

Lisfranc's Joint Injuries

- Any bony or ligamentous injury involving the tarsometatarsal joint complex
- Named after the Napoleonic-era surgeon who described amputations at this level without ever defining a specific injury

Incidence

- Generally considered rare (1 per 55,000 people per year or 15/5500 fractures)
- As index of suspicion increases, so does incidence
- Approximately 20% of Lisfranc's injuries may be overlooked (especially in polytraumatized patients)

Mechanisms of Injury

- Trauma: motor vehicle accidents account for one third to two thirds of all cases (incidence of lower extremity foot trauma has increased with the use of air bags)
- Crush injuries
- Sports-related injuries are also occurring with increasing frequency

Diagnosis

- Requires a high degree of clinical suspicion
- 1. 20% misdiagnosed
- 2. 40% no treatment in the 1st week
- Be wary of the diagnosis of "midfoot sprain"

Clinical Findings

- Midfoot pain with difficulty in weight bearing
- •Swelling across the dorsum of the foot
- •Deformity variable due to possible spontaneous reduction

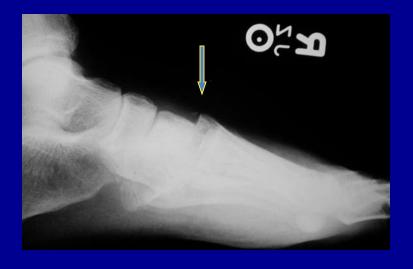
Clinical Findings

- •Ecchymosis may appear late
- •Local tenderness at tarsometatarsal joints
- •Gentle stressing plantar/ dorsiflexion and rotation will reveal instability

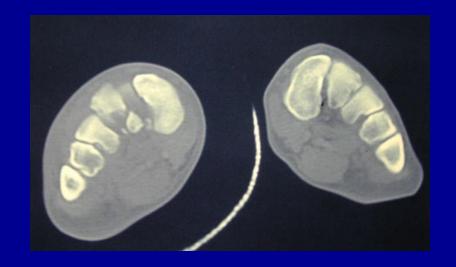
Clinical Findings

- •Check neurovascular status for compromise of dorsalis pedis artery and/ or deep peroneal nerve injury
- •Asses for possible COMPARTMENT SYNDROME

- •AP, Lateral, and 30° Oblique X-Rays are mandatory
- •AP: The medial margin of the 2nd metatarsal base and medial margin of the medial cuneifrom should be alligned



•Oblique: Medial base of the 4th metatarsal and medial margin of the cuboid should be alligned


•Lateral: The dorsal surface of the 1st and 2nd metatarsals should be level to the corresponding cuneiforms

- Standing views provide "stress" and may demonstrate subtle diastasis
- Comparison views are very helpful
- Associated fractures:
 - 1. Base of 2nd metatarsal
 - 2. Avulsion navicular
 - 3. Isolated medial cuneiform
 - 4. Cuboid

- •Additional imaging:
- 1. True stress views or fluroscopy
- 2. CT Scans
- 3. Bone scan for persistent pain with no radiographic findings
- 4. If suspicious: repeat x-rays and keep looking

Treatment

- Early recognition is the key to preventing long term disability
- Anatomic reduction is necessary for best results: displacement of >1mm. or gross instability of tarsometatarsal, intercuneiform, or naviculocuneiform joints is unacceptable
- Goal: obtain or maintain anatomic reduction

Treatment

- •Nonoperative: for nondisplaced injuries with normal weightbearing or stress x-rays
- •Short leg cast
- •4 to 6 weeks nonweight bearing
- •Repeat x-rays to rule out displacement as swelling decreases
- •Total treatment 2-3 months