CAUSES OF SCI

- 1. Road accidents > 50% (80% in Kenya)
- 2. Assault
- 3. Falls
- 4. Sports injuries (e.g. diving in rugby)
- 5 6.5% SCI die before reaching hospitals
- 4 0.7% die within two years of injury

MECHANISM

- Mechanical impact causes primary neural injury:
- a. Neuropraxia- spinal shock
- b. Neurotemesis
- c. Axonotemesis- complete paralysis.
- The impact, compression and contusion causes immediate damage to nerve cells, axonal rails and blood vessels.

Spinal injury models show:

- Increased tissue water content
- Increased lactate levels
- Decreased extra cellular calcium levels
- Decreased tissue oxygenation
- Decreased pyruvate
- Decreased ATP concentration
- These are features of ischaemia, hypoxia, uncoupled oxidative phosphorylation and aerobic glycolysis

Spinal injury models show:

- Increased tissue water content
- Increased lactate levels
- Decreased extra cellular calcium levels
- 4. Decreased tissue oxygenation
- Decreased pyruvate
- 6. Decreased ATP concentration
- These are features of ischaemia, hypoxia, uncoupled oxidative phosphorylation and aerobic glycolysis

Explanatory theories:

- Free radical theory: Increase in O₂ damage cell membrane
- Calcium theory: Influx of extra cellular Ca²⁺ which activates phospholipases, proteases and phosphatases. The net effect is disruption of mitochondrial activity (oxidative phosphorylation)
- Opiate receptor theory: Opiate antagonist have shown improvement
- Inflammatory theory: Increase in inflammatory substances like prostaglandins, leukotrenes, platelet activatory factors.

Whatever the mechanism, there is a *hostile* environment for surviving neurons which were not directly injured. The neurotrophic and other growth factors can not support the surviving neurons. Toxic molecules from dying neurons further kill the neutrons.

Inhibition of axonal regeneration

These factors affect the above process:

- Toxic molecules of dying cells
- · Deleterious effect of immune system
- Astrocytic barrier
- Apoptosis

Histological Manifestation of ASCI

Nectosis of central cord gray matter (hours)

Followed by cystic degeneration (weeks)

Development of scar

Management Principles

- Neuroprotection
- Inhibition of growth inhibiting proteins (and inhibition of astrocytic response).
- Provide molecular environment for surviving neurons (blocking apoptosis through Bcl-2)
- Delivery of appropriate trophic factors and stimulation of axonal growth.

HISTORY

Weakness

Transient paralysis

 History of electric shooting sensation distal to the site

PHYSICAL FINDINGS

Pulse pressure dissociation

 Local crepitus on the spine, haematoma or local deformity

Paralysis: - tetraplegia

- paraplegia

- COMPLETENESS
- -Sacral sparing:
 - > rectal examination
 - anal wink
- LEVEL
- -Radiological
- -Clinical
 - ➤ Motor
 - > Reflex
 - ➤ Sensory
- STABILITY
- -Column concept
- -Potential for neural injury